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1990s
ASCI Red
1-3Tflops

1970s
Cray-1
160Mflops



But...
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The roadmap to build and deploy an exascale computer has EXASCALE COMPUTING PROJECT
extended over the last few years—and more than once.
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During SC16, Exascale Computing Project Director Paul Messina hinted at an
accelerated timeline for reaching exascale in the US and now we have official
onfirmation from Dr. Messina that the US is contracting its exascale timeline

by one year.

Under the updated plan, the US will still be fielding at least two exascale
machines in the next seven years. One of those machines remains on the
original timeline — targeting delivery for 2022 and acceptance in 2023.
However, the other machine is now on track for delivery in 2021 and
acceptance in 2022. Further the intention of the DOE is that that first machine
ill employ a novel architecture.



System Reliability
Challenge for Exascale



One failure per . o

] 1E+09 DAY per chip | 1
Imes Connecting the Global - H
\ 1E+08
Electronics Community < / :
T 16407 p el
Home | News | Opinion Messages ' Authors | Video | Slideshows | Teardown  Education | EEL c W ~ \. :
o

~ 1E+06 =- |
designlines Android | Automotive | Embedded | Industrial Control | Internet of Things = S 1 One failure per :
ST /./% 1 DAY per 100 chips :

- ] i Aggressive voltage scaling
m NEWS & ANALYSIS: FinFETs Flow at Samsung, TSMC £ o I i (near threshold computing) i

. H MONTH per 100 chi
News & Analysis g 16403 panteidiy :
. . wi 1
Strategy for reducing soft errors is £ o :
+
1
needed —— @ 4 :
) 1E+01

News & Analysis 1
Strategy for Soft errors a problem as SRAM Past Present Future i
Mark-Eric Jone: geometries shrink 1E+00 - - : - - ]

8/27/2002 05:45 P Jeamne Graham Lo ToRKTE 180 130 20 65 45 32 22 16
Post a comment Posta conmen Technology Node (nm) [Shivakumar'02]

Large-scale scientific applications
are going to face severe resilience
challenge at exascale!

- "Top Ten Exascale Research Challenges”,
DOE ASCAC Subcommittee Report, Feb. 2014



Long-running, large-scale scientific
applications are interrupted by failures on
HPC systems.

At exascale, an application is expected to
be interrupted every couple of hours.



Denovo LAMMPS

Astrophysics, climate modeling, combustion and fusion
applications periodically write checkpoints to permanent storage
system, and recover from the last checkpoint in case of a failure.

Storage system
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Energy-Efficiency and Data
Movement Challenge at
Exascale



excessive I/0

Data Production For Reliability

Already

overhead due to

checkpoint/restart
Domain Application Checkpoint
data size
Astrophysics CHIMERA 160TB
Astrophysics VULCUN/2D 0.83GB
Climate POP 26 GB
Combustion S3D STB
Fusion GTC 20TB
Fusion GYRO 50GB

LAMMPS

Denovo

Compute system

" )

Storage system

At exascale,
applications may
spend up to 60% of
execution time in
checkpoint/restart




Data Production For Post Analysis
4

GTC (a plasma physics R
application) produces 30TB data
per hour at-scale on the Titan
\ supercomputer y
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(On the Mira supercomputer, few
applications in the material
science domain spend 30%-85%
\of execution time in I/O at-scale. y
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Source: Kogge et el., ExaScale Computing Study: Technology Challenges in Achieving Exascale Systems, 2008



Brief Overview of My
Research Addressing These
Challenges



Improving operational efficiency and \
reliability of data-center scale systems
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Energy-efficient in-situ data analysis on
SSDs for extreme-scale machines

casibility of Active Flash Approach
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Exploiting Temporal Locality In

System Failures for Mitigatin
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A large fraction of failures occur much

before the MTBF for many HPC systems.




. Simulation/Computation Lost Work

- Checkpoint § Failure
g Failure
le— ]
Checkpoint
Interval Total execution time is the sum of the useful

computation/simulation time, the checkpointing
overhead and the lost work
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Optimal Checkpointing Interval (OCI)
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Lazy Checkpointing
Basic Ildea and Intuition
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Temporal locality In failures can be

exploited by becoming “increasingly”
lazy in taking checkpoints.




“Bounding” the Checkpointing Interval

Key is to balance the trade-off
between reduction in checkpointing overhead
and possible increase in the waste work
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Lazy Checkpointing Prototype

Evaluated using real failure and 1/0
bandwidth logs

Tllan Compute Nodes
System failure database \

Dynamic checkpointing using failure
and 1/0 bandwidth information

MTBF and
checkpoint
time estimation

* Compute updated OClI|

[ Take a checkpoint at updated OCI ‘
v

Application
checkpoint
data structure

Write to permanent storage
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Exploiting Spatial Locality for
Improved Reliability

Failure type

Quarantine Technique
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Quarantine: Design Challenges

Quarantine Granularity

Fraction of avoided system failures
versus compute resource waste

|

~ .
Quarantine

\

Quarantine Time Duration

Diminishing returns on the number
of avoided failures

| System Utilization vs. Reliability

| Trading-off lower system utilization for
Y improved reliability




Quarantine Technique: In Action
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Ensuring High System Utilization

Percentage of Node-hours used
by debug jobs

B % Failures Avoided B % Quarantine Hours
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Significant fraction of failures can be avoided
from interrupting production applications

Debug or non-production jobs can be
scheduled on quarantine nodes

e 1.4%

- 0.69%



In-Situ Data Analysis via Active
Computation on Emerging
Storage Devices

Active Flash



Traditional Scientific Data Analysis
via Offline Cluster

Genomics,
Climate modeling,
Combustion, Fusion l

Simulation nodes

Regex matching,
Statistics collection,
Clustering, Compression

Storage system Offline analytics
cluster



In-situ Data Analysis via Active
Computation on SSDs

Scientific data analysis performed on SSD controllers
concurrently without hurting simulation performance

Storage system



In-situ Data Analysis via Active
Computation on SSDs

Enabled by increasingly multi-core controllers in SSDs
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€a l 1 I Y I . length

— data analysis Nowonte [--------- -
Extent list - identifies input (or output) file
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Feasibility of the approach demonstrated by prototype
implementation on OpenSSD platform, but...



Beyond Active Flash
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Exciting Opportunities in
Sustainable Exascale
Computing



Data-centric Hybrid Systems

Runtime systems, libraries, |=o
system log, job scheduler,

AS
resource manager COZ%Q> #
\
amazon |EC 2 lﬂmm

targe-scale compute & storage systems
J
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Intelligently Operating Future Systems

4 . L o
Runtime systems, libraries, |=s FDED
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eea 1or
resource manager
\ J COZQSO) ﬁ effectively
/ managing
™\ elastic
amazon EC2  IMMIVIENIRSNE computing
resources
Large-scale compute & storage systems (cloud + HPC)
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Intelligently Operating Future Systems
( Need for \

intelligent,
actionable
analytical tools
for improving
) system

( ] ] i =
Runtime systems, libraries, |=o FEED efficiency
(performance,

system log, job scheduler, .
resource manager CO&O) ﬁ reliability, and
cost-efflmency))

(

amazonu‘ EC2

webservices"

Large-scale compute & storage systems
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Trends and Observation

Heterogeneity In
performance, cost,
and reliability

Heterogeneity in ¢ = ) |

power-efficiency, @ il

programmability, -
and scalability
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Future devices are likely to be priced according
to their reliability and power consumption levels
for a given performance level



Focus Areas

Elastic Computing: Manage “dynamic”
heterogeneity efficiently

Actionable analytical tools, and techniques to reduce cost and
queue wait time, and better dynamic provisioning of system

amazon EC2

Understanding and leveraging
application-specific characteristics

Fault tolerance characteristics, power capping effects on
performance, hardware power and resilience knob tuning

== | Exploiting environmental and
./ power/cooling conditions

Develop new techniques for improved systems performance;
power, performance, and reliability trade-offs




In-situ data analytics approach alone
will not be sufficient at exascale

Compute system

== == Multiple orders of increase
in the data production rate
for large-scale applications

SSD-based burst buffer

Rapid increase in multi-site
data-intensive workflows

Storage system Analysis cluster



Focus Areas

At Preserving data provenance
ribdh d - .
2 [ Eliminate computational redundancy (MapReuse)

Opportunistic data analysis on the fly

Statistical and probabilistic sampling

Answer quality trade-offs

Lossy compression and approximate analysis




Thanks!

Devesh Tiwari
tiwari@northeastern.edu



