How HPC is transforming the study of biological machines

HPC Day UMass Dartmouth May 25th 2017

Paul Whitford Department of Physics Northeastern University

From Polymer Sequences to Molecular Assemblies

Functional aspects of molecules often require folding and assembly. Biomolecular machines are extremely dynamic and flexible.

Conformational Changes in Proteins

- Believed to be important in many signaling pathways
- Can be rate limiting
- Static structures *may* suggest a "hinge-rod" description

Lieser, Shaffer & Adams, JBC, 2006 Wolf-Watz, Thai, Henzler-Wildman, Hadjipavlou, Eisenmesser & Kern, **NSB**, 2004

Adenylate Kinase

- 214 residues ~ 3000 atoms (excluding solvent)
- LID and NMP domains undergo **5-10** Å displacements during ligand binding
- Classic system used for model/method development.
- Computationally tractable with many models

Extensively studied in the 2000s

Predicted and Observed Cracking (Local unfolding/disorder)

Strain results in partial unfolding/refolding

Whitford, Miyashita, Levy & Onuchic, (2007) JMB 366, 1661-1667

Cracking is fundamentally distinct from dynamics in macroscopic systems

Larger-Scale Systems

Adenylate Kinase 214 protein residues ~ 20 kDa in mass

Paradigm system for exploring energetics of functional transitions in biopolymers.

Many questions are computationally tractable

The 70S ribosome: ~4,000 RNA residues, >10,000 protein
residues. > 2 MDa in mass.
Is there a prominent role of disorder in larger machines?

Over 50 proteins 3 RNAs w/ ~4000 nt ~150,000 atoms

PDB ID: 4V6F Jenner et al. (2010)

First simulation of a ribosome Sanbonmatsu and colleagues (early 2000s)

Supplementary Movie 1: Simulating movement of transfer RNA into the ribosome during decoding

Sanbonmatsu*, K.Y., Joseph, S. and C.S. Tung Los Alamos National Laboratory

Explicit Solvent Targeted Molecular Dynamics

 $N_{atoms} = 2.64 \times 10^{6}$

ASCI Q Machine (LANL)

*corresponding author: kys@lanl.gov

www.t10.lanl.gov/kys

2 nanosecond simulation with targeting forces added Required the ASCI Q Machine (#2/3 on top500 in 2003/2004)

Extending the timescale of detailed models

- Amber 99 forcefield
- Water, ions, hydrogen atoms explicitly represented
- General parameterization used for all simulations
- 70S Ribosome: [MgCl₂]=7mM, [KCl]=100m
- Simulations are typically nanosecond timescales (here, 200-1400 ns per run. 13.5 μs total) -- ~2000 cores for 5 months – Now Anton 2(Shaw group) can perform in ~8 hours
- Short-timescale (<100 ns) fluctuations can be observed
- Biological timescales (many milliseconds) are not accessible

PCW et al. *JACS* 2010 PLoS Comp Bio 2013

Explicit-solvent simulation of an E. coli ribosome

2.1 million atoms

NMCAC Encanto Supercomputer TACC Lonestar Supercomputer

Whitford, et al. PLoS Comp Biol 9, e1003003, 2013.

(p.whitford@neu.edu)

Stochastic barrier-crossing events

Enabled the study of statistical properties of large-scale rearrangements

Even with simpler model, each simulation typically required weeks using 128 cores *Hundreds, or thousands, of simulated events are required*

Performed using the Encanto Supercomputer (#8 on top500 in 2008)

PCW et al. RNA 2010

Improved statistics enables the study of distributions

tRNA accommodation with a SMOG model

Representative trajectory described in: Whitford et al. *RNA* 16, 1196-1402, 2010.

NMCAC Encanto Supercomputer

Provides signatures of the role of flexibility

PCW et al RNA 2010

Dissecting the physical factors that govern kinetics: Ongoing

Observations:

Experiments suggest EF-Tu dissociation can be slower, or faster than accommodation of aa-tRNA (Pape et al, EMBO J 1999) and that aa-tRNA accommodation rates can significantly depend on conditions (Johannson et al. Mol Cell 2008).

Models predict there are at least two conformational substeps: elbow accommodation and 3'-CCA accommodation

Question: Can the rate of EF-Tu dissociation from the ribosome impact accommodation rates?

Controlling Kinetics

Barrier much larger in the absence of EF-Tu (orders of magnitude slower kinetics)

Each profile requires ~150 simulations, each for two days on 28 cores – aim to calculate profiles under a range of conditions Red: EF-Tu bound to ribosome, tRNA released Black: EF-Tu absent

Jeff Noel and PCW Nature Comm. (2016)

EF-Tu prevents sampling of a disordered ensemble

-- By limiting accessible phase space, forward barrier is lowered

Jeff Noel and PCW Nature Comm. (2016)

Adapted from Achenbach & Nierhaus, Nat Struct Mol Biol 20, 1019-1022 (2013)

Over 50 proteins 3 RNAs w/ ~4000 nt ~150,000 atoms

PDB ID: 4V6F Jenner et al. (2010)

Stochastic translocation events

Initiate each simulation in a partially rotated A/A-P/E configuration Spontaneously reaches the post configuration

Kien Nguyen and PCW Nature Comm. (2016)

Cryo-em models (star) Pink: Ramrath et al *Nature* 2013 (tmRNA)

intermediates arise from steric effects

250 simulated events

Kien Nguyen and PCW Nature Comm. (2016)

Dissecting Steric Factors of Tilting

Kien Nguyen and PCW Nature Comm. (2016)

Simulation of mRNA-tRNA translocation

1 of 250 simulated events

Kien Nguyen Paul Whitford Northeastern University Department of Physics

What's next?

Ribosomes

200-300k atoms 2M atoms with water ~100-1000 cores

Bacteriophages

~2 million atoms ~20M atoms with water ~500-10,000 cores

Endless list of biological assemblies exist

HIV-1 Capsid ~4 million atoms ~50M atoms with water ~2,000-100,000 cores

- New models and HPC resources have allowed us to move away from performing single simulations
- Can now dissect the physical factors that govern statistical properties
- In 2017, approaches for the ribosome are comparable to efforts to study small proteins around 2000
- Continued HPC development will allow systematic study of more complex, and larger assemblies

Thanks

- Reaction coordinates
 - Jeff Noel (Max Delbrück Center, Berlin)
 - Huan (Joyce) Yang (NEU)
 - Vitor Leite (Univ. Estadual São Paulo)
 - Jorge Chahine (Univ. Estadual São Paulo)
 - Mariana Levi (Northeastern)
 - Liah Dukaye (Northeastern)
- tRNA-mRNA translocation and hybrid motion
 - Kien Nguyen (Northeastern)
- Explicit-solvent simulations
 - Karissa Sanbonmatsu (LANL)
- SMOG team
 - Jeff Noel (Max Delbrück Center, Berlin)
 - Mariana Levi (Northeastern)
 - José Onuchic (Rice U)

Computing

- NEU Discovery Cluster
- C3DDB cluster
- TeraGrid/XSEDE
- Univ São Paulo/Rice Univ. Blue Gene/Q

NSF CAREER MCB/POLS

Downloadable SMOG software

http://smog-server.org

Noel, Levi, Raghunathan, Lammert, Hayes, Onuchic, Whitford (2016) PLoS Comput Biol 12(3): e1004794

