

Cosmological Simulations of Galaxy Formation

Ryan McKinnon

May 25, 2017

The Big Picture

The Big Picture

EVOLUTION OF GALAXIES

Big Bang Afterglow light pattern

Recombination

Dark ages

First stars

First galaxies

Galaxy development

Galaxy clusters

The Big Picture

1. How does one build and run such a simulation?

2. What sort of science can we do?

3. What are the computational costs?

Image Credit: Greg Snyder

Physics

Core of the Simulation

Astrophysics

Computational Astrophysics

Choice of Initial Conditions Fundamental Approach

Computer Science

Generic Simulation Approach Discretize Medium and Equations of Motion

 $\rho = \rho(\vec{x})$

 $\vec{v} = \vec{v}(\vec{x})$

 $\vec{a} = \vec{a}(\vec{x})$

 $\rho_i \approx \sum m_j W_{ij}$

 $\vec{v}_i = \vec{v}_i$

 $\vec{a}_i = \vec{a}_i(\vec{x}, \vec{v}, \rho, ...)$

Simulation Approach

Physical Input

Cosmological Simulation Approach

Implement Relevant Physics

1. Gravity

- Drives structure formation
- Influences all matter on large scales

2. Hydrodynamics

- Affects flow of gas within and around galaxies
- Computationally more challenging than gravity
- 3. "Galaxy Formation Physics"
 - Various processes that shape internal structure of galaxies
 - Star formation, gas cooling, "feedback" onto surrounding gas, etc.

Cosmological Simulation Approach Set up initial conditions

Use early universe cosmology to set initial **distribution** of matter

Early universe almost uniform, with ~10 parts per million fluctuations

WMAP

Planck

Millennium-II Simulation

http://www.mpa-garching.mpg.de/galform/millennium-ll

Mike Boylan-Kolchin Max Planck Institute for Astrophysics

Cosmological Simulation Approach

Implement Relevant Physics

1. Gravity

- Drives structure formation
- Influences all matter on large scales

2. Hydrodynamics

- Affects flow of gas within and around galaxies
- Computationally more challenging than gravity
- 3. "Galaxy Formation Physics"
 - Various processes that shape internal structure of galaxies
 - Star formation, gas cooling, "feedback" onto surrounding gas, etc.

Cosmological Simulation Approach Hydrodynamical Methods

Cosmological Simulation Approach

Example of Kelvin-Helmholtz Instability

Z=1.91

Paul Torrey Mark Vogelsberger

Harvard-Smithsonian Center for Astrophysics Institute for Theory and Computation CfA

Are we done?

What other physics do we need to include?

Importance of Feedback on Galaxy Growth

Star formation is **too efficient** unless we account for physics that can regulate growth of galaxies!

Cosmological Simulation Approach

Implement Relevant Physics

1. Gravity

- Drives structure formation
- Influences all matter on large scales

2. Hydrodynamics

- Affects flow of gas within and around galaxies
- Computationally more challenging than gravity

3. "Galaxy Formation Physics"

- Various processes that shape internal structure of galaxies
- Star formation, gas cooling, "feedback" onto surrounding gas, etc.

The Illustris Collaboration

Core Collaboration Members:

- Mark Vogelsberger (MIT)
- Paul Torrey (MIT)
- Shy Genel (Columbia)
- Debora Sijacki (Cambridge)
- Volker Springel (HITS)
- Lars Hernquist (Harvard)

Current Collaboration Status:

- ~30 Active Members
- ~10 Institutions
- Wide range of expertise and interests

Heidelberg Institute for Theoretical Studies

HARVARD UNIVERSITY

The Illustris Simulation

Testing Various Physics Models

Simulated Sky (1)

Testing Various Physics Models

Simulated Sky (2)

Testing Various Physics Models

Simulated Sky (3)

Testing Various Physics Models

Simulated Sky (4)

Computing Trends and Projections How Big is Illustris?

Computing Trends and Projections Moore's Law: The Good

Computing Trends and Projections Moore's Law: The Good

Computing Trends and Projections Moore's Law: The Bad

Computing Trends and Projections Moore's Law: The Bad

Computing Trends and Projections Moore's Law: The Bad

Computing Trends and Projections Moore's Law: The Ugly

Computing Trends and Projections Moore's Law: The Ugly

Computing Trends and Projections Moore's Law: A More Realistic Future

Better metrics of computing efficiency?

How to handle complexity of heterogeneous architectures (e.g. CPUs + GPUs)?

Complexity of hybrid parallelism (e.g. MPI + threading)?

The Green500 List

Listed below are the June 2015 Theomputers ranked from 1 to 10.

Green500 Rank	MFLOPS/W	Computer*	Total Power (kW)
1	7,031.58	Shoubu - ExaScaler-1.4 80Brick, Xeon E5-2618Lv3 8C 2.3GHz, Infiniband FDR, PEZY-SC	50.32
2	6,842.31	Suiren Elue - ExaScaler-1.4 16Brick, Xeon E5-2618Lv3 8C 2.3GHz, Infiniband, PEZY-SC	28.25
3	6,217.04	Suiren - ExaScaler 32U256SC Cluster, Intel Xeon E5-2660v2 10C 2.2GHz, Infiniband FDR, PEZY-SC	32.59
4	5,271.81	ASUS ESC4000 FDR/G2S, Intel Xeon E5-2690v2 10C 3GHz, Infiniband FDR, AMD FirePro S9150	57.15
5	4,257.88	TSUBAME-KFC - LX 1U-4GPU/104Re-1G Cluster, Intel Xeon E5-2620v2 6C 2.100GHz, Infiniband FDR, NVIDIA K20x	39.83
6	4,112.11	XStream - Cray CS-Storm, Intel Xeon E5-2680v2 10C 2.8GHz, Infiniband FDR, Nvidia K80	190.00
7	3,962.73	Storm1 - Cray CS-Storm, Intel Xeon E5-2660v2 10C 2.2GHz, Infiniband FDR, Nvidia K40m	44.54
8	3,631.70	Wilkes - Dell T620 Cluster, Intel Xeon E5-2630v2 6C 2.600GHz, Infiniband FDR, NVIDIA K20	52.62
9	3,614.71	Taurus GPUs - Bull bullx R400, Xeon E5-2680v3 12C 2.5GHz, Infiniband FDR, Nvidia K80	58.01
10	3,543.32	iDataPlex DX360M4, Intel Xeon E5-2630v2 10C 2.800GHz, Infiniband, NVIDIA K20x	64.60

Summary

- Galaxy formation is complicated!
- Need to account for gravity, hydrodynamics, and small-scale physics within galaxies
- Can use simulations to "test out" various physics models, see what processes drive galaxy formation
- HPC advances are needed in the future to enable larger simulations, easier parallelization