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Overview
The recently developed field of Radial Basis Function (RBF) approximations for the
solution of partial differential equations has shown much promise and generated en-
thusiasm among researchers. The impact of RBF methods is clearly evidenced by
the large number of publications on RBF methods which have appeared in the past
decade, not only in mathematics but also in physics and engineering journals. This
is an active and growing field, and one which has included significant collaborations
across disciplines. The open and free exchange of ideas in this field is seen clearly
in the freely available RBF MATLAB research codes posted by its authors through
MATLAB files exchange for the purpose of reproducible research. This field has made
inroads in education as well: some departments have introduced RBF methods to un-
dergraduate and graduate students in their beginning numerical analysis classes. In
short, RBF methods have become mainstream research in numerical analysis and
scientific computing. A conference devoted to these methods and their applications is
long overdue.

The goal of this conference is to educate and inspire researchers and stu-
dents in RBF methods and to stimulate further studies in their analysis
and applications. The conference will feature ten lectures by two experts in this
area, Bengt Fornberg and Natasha Flyer. These lectures will span the range from the
numerical analysis of RBF methods to cutting-edge implementation. The advantage
of this approach is that the audience will have a deep understanding of the methods
from both a theoretical and practical perspective. The lectures will begin with an
understanding of the RBF methods as a generalization of pseudospectral methods
to non-orthogonal basis functions, and examine the issues of stability and efficient
implementation. These issues are still the topics of research in progress, and will be
presented with a focus on the open problems in this field. The transition to the is-
sue of applications will be made through comparison with pseudospectral methods
for partial differential equations. The final four lectures will address implementation
issues and applications to problems in the geosciences.

In addition to these ten lectures by the principal lecturers, supplementary forty-
minute talks will be given by invited speakers. The aim of these lectures is to provide
a broader view of the range of current issues in RBF methods, which will enhance the
informal discussion sessions and panel discussions on recent advances and open prob-
lems. This structure will facilitate energetic discussion which will benefit both the
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invited researchers and the attendees, and result in active interactions and collabo-
rations among participants. This conference will also serve the purpose of amplifying
and disseminating NSF-funded research in the field of RBF methods. Of the eight
speakers (principal and secondary), seven have been funded by the NSF over the last
decade for their work in this field. This conference will serve to disseminate their work
and increase the impact of their research by fostering new research and collaborations
on RBF methods, thus increasing the effect of the NSF’s investment in research fund-
ing. Additionally, an expository monograph based on ten lectures will be prepared
and made available for non-participants, and a web site devoted to the conference
will make it accessible to those who could not attend. This will be of additional ben-
efit to the students attending, who will be able to use these materials for self-study,
and to the researchers who wish to convert this information to course materials.

Of major importance to the organizers is the focus on increasing diversity in the
field, and encouraging young researchers. To this end, the organizers are committed
to encouraging young minority and women researchers by providing them with di-
verse role models among the speakers. One of the principal speakers is a woman (as
are two of the organizers), and the list of secondary speakers includes a researcher
from underrepresented groups. Furthermore, the organizers will put extra efforts into
recruiting and funding junior attendees (including graduate students and beginning
researchers), women, and researchers from underrepresented groups. This recruitment
will be accomplished by web-advertising, announcements in mailing lists such as NA-
Digest, and speaking to colleagues from local universities and enlisting their help in
identifying interested attendees and advertising the conference to them.

1. Subject: Radial Basis Functions
RBF methods have been praised for their simplicity and ease of implementation in
multivariate scattered data approximation [7, 15, 74]. The first application of RBF
was made in the 1970’s by geophysicist R.L. Hardy [33], for topography on irregular
surfaces. Recently, they have become increasingly popular for the numerical solu-
tion of PDEs [28, 43, 49], particularly in modeling phenomena in the geosciences
[18, 19, 76, 78]. RBF-based methods offer numerous advantages when compared to
classical methods such as finite difference, finite volume, and finite element. They do
not require meshing or triangulation, do not need staircasing or polygonization for
boundaries. Moreover, RBF methods are simple to implement, independent of dimen-
sion, and they can achieve high-order or spectral accuracy [6, 11, 58, 80], depending
on the choice of RBFs.

Like all numerical methods, RBF methods require a study of their stability properties,
and the development of techniques for their numerically efficient implementation. For
applications, a deep understanding of both the physical and numerical properties of
the model and the method is needed. In the following subsections, we briefly describe
the background and range of issue which will be covered in the conference, giving
some background and some results of numerical experiments as motivation.
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1.1. Numerical Analysis of RBF Methods. RBF interpolation can be briefly
explained as follows: Given the values of a function F (x) at nodes x1, . . . ,xN known
as RBF centers in d dimensions, the basic form for an RBF approximation is

F (x) ≈ FN(x) =
N∑

j=1

λjφ(εj‖x− xj‖), (1)

where ‖ ·‖ denotes the Euclidean distance between two points, εj denotes a shape
parameter, and φ(r) is a radial basis function defined for r ≥ 0. Given scalar function
values fi = F (xi), the expansion coefficients λj are obtained by solving a linear system
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where the interpolation matrix A satisfies (A)ij = φ(εj‖xi − xj‖). Common choices
of φ(r) are:

• Infinitely smooth with a free parameter: Multiquadrics (φ(εr) =
√

1 + (εr)2)
and Gaussian (φ(εr) = e−(εr)2);

• Piecewise smooth and parameter-free: Cubic (φ(r) = r3), thin plate splines
(φ(r) = r2ln r);

• Compactly supported piecewise polynomials with free parameter for adjusting
the support: Wendland functions [73].

In general, the interpolation matrix A is guaranteed to be nonsingular [55], for typical
choices of φ, under mild restrictions. This property also carries over when the shape
parameter is a constant (εj ≡ ε), and/or when the interpolation is subject to minor
modifications such as adding a low order polynomial to (1). Under certain conditions,
the infinitely smooth radial functions exhibit exponential (spectral) convergence as a
function of center spacing, while the piecewise smooth ones give algebraic convergence
[6, 11, 73, 80].

The study of different radial basis functions and the effect of the shape parameter is
an ongoing active research field. For example, researchers have considered methods
based on radial basis functions which have compact support; the appeal of compactly
supported functions is that they lead naturally to banded interpolation matrices,
although experience has shown that the matrices need to be large for good accu-
racy. Multiquadrics respond rather sensitively to the shape parameter ε. For example,
in one dimension, the limit ε → ∞ produces piecewise linear interpolation, and the
‘flat limit’ ε → 0 produces global polynomial interpolation [12, 48]. Hence smaller
values of ε are associated with more accurate approximations. Many rules of thumb
for the shape parameter selection are known from numerical experiments and theories
[9, 24, 44, 63].
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Despite the advantages mentioned above, there are many open issues in the develop-
ment and implementation of RBF methods. In particular, RBF methods have serious
drawbacks when implemented directly through equations (1) and (2). As the number
of centers grows, a relatively large algebraic system needs to be solved. Moreover,
severe ill-conditioning of the interpolation matrix A leads to instabilities that make
spectral convergence difficult to achieve. This behavior is manifested as a classic accu-
racy and stability trade-off or uncertainty principle; for instance, the condition num-
ber of A, κ(A), grows exponentially with N [66]. For small N , it is possible to compute
the interpolant F (x) accurately, using complex contour integration [23]. Another ap-
proach that also bypasses the ‘uncertainty principle’, RBF-QR, works for thousands
of nodes on the surface of a sphere [22] and appears to generalize to other geome-
tries [27]. Besides RBF-QR, methods based on FFT decomposition have also been
investigated [34, 45, 46]. If one wishes to use an iterative method to solve for the in-
terpolation coefficients, ill-conditioning can also create a serious convergence issue. In
such cases good preconditioners are highly needed [1, 17, 31].

There are other open areas of research in RBF methods which are not related to
the solution of the linear system. Node and center locations also play a crucial role
through the classical problem of interpolation stability, as measured by Lebesgue
constants and manifested through the Runge phenomenon. It is clear, for example
by comparison to the flat limit of polynomial interpolation, that spectral convergence
results such as those cited above must be limited to certain classes of functions that are
well-behaved beyond analyticity in the domain of approximation. This is thoroughly
described in [60] for the special case of Gaussian RBFs in one dimension. Just as
in polynomial potential theory, for the limit N → ∞ an interpolated function must
be analytic in a complex domain larger than the interval of approximation, unless
a special node density is used. This density clusters the nodes toward the end of
the interval, in the same way as nodes based on Jacobi polynomials, in order to
avoid Runge oscillations. The existence and construction of stable node sets in higher
dimensions and general geometries, in particular with regards to proper clustering
near the boundary, remain a very challenging problem.

Current active research topics in RBF (in addition to its implementations for the
numerical solutions for PDEs) also include: RBF-Pseudospectral methods [14, 26],
Gibbs phenomenon in RBF interpolation [21, 38], eigenvalue stability in time-depen-
dent PDEs and least-squares RBF [61], consistent adaptive implementation [4, 13,
57, 64], hybrid methods [2, 5, 78], eigenvalue problem [59], edge detection methods
[39, 40], post-processing of RBF approximations [65], anisotropic RBF [10], integrated
RBF (iRBF) methods [53, 54], RBF methods for dynamical systems [29, 30], and local
RBF methods [25, 67, 68, 77, 79]. Several books [7, 15, 74] emphasizing theoretical
issues and implementations have been written by leading researchers in the field.
The aim of this conference is to bring together some of these experts to describe the
progress and state of the art of these current research topics.
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1.2. Radial Basis Functions in the Computational Geosciences. An under-
standing of RBF methods would be incomplete without the recognition of how these
powerful methods have been applied to large-scale physical problems. For this reason,
the conference will describe how RBFs are being used for planetary-scale modeling of
important geophysical phenomena, from the evolution of cold and warm frontal zones
in meteorological modeling to translating pressure systems common in weather pat-
terns to 3D convection of the Earth’s mantle. These RBF results are being compared
to state-of-the-art methods in the field, illustrating that RBF methods are ripe for a
larger exposure to mathematicians and scientists.

1.2.1. Weather Fronts - Cyclogenesis with Local Node Refinement. A node
refinement scheme should reflect the physics of the problem, while decreasing the com-
putational cost to achieve a given accuracy. If the transition in node density is not
smooth, numerical wave dispersion will occur. A quite simple approach is to simu-
late electrostatic repulsion [18]. By applying different charges to the nodes through
a charge distribution function Q(x) that reflects the physics (such as the gradient
of the velocity), and letting them move until force equilibrium is reached, the node
density will become smoothly varying over the domain.

It is also crucial to realize that variable node density can cause a Runge phenomena to
occur [24]. To counteract this, the shape of the RBF needs to vary over the domain. A
heuristic that has proved very successful is the nearest neighbor rule [13, 18, 24],
defined by varying the RBF shape parameter by the inverse of the Euclidean distance
between the node of interest and its closest neighbor node. An example of using these
strategies is given in Figure 1 for translating vortex roll-up on a sphere, demonstrating
the physics of the observed evolution of cold and warm frontal zones. Comparisons
to Discontinuous Galerkin (DG) and Finite Volume (FV) with and without adaptive
mesh refinement (AMR) after 12 days is given in Table 1. The result show RBFs give
more accurate results than any other method previously published in the literature
with refinement and that for a given accuracy, without refinement, RBFs require
much less nodes while taking unusually large time steps [18].
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Figure 1: (a) Translating vortex roll-up after 24 days.(b) RBF refined nodes.(c) Mag-
nitude of error.

1.2.2. Translating Pressure Systems-Nonlinear Unsteady Flow. The flow
field comprises a translating low pressure center that is superimposed on a westerly
jet stream. This setup resembles the observed properties of atmospheric flows in the
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Method No. of Nodes Ang. Res. Time step (min.) !2 Error Ref.
Without local refinement
RBF 3,136 6.4o 60 4 · 10−3 [18]
FV (lat-long grid) 165,888 0.625o 10 2 · 10−3 [56]
FV (cubed sphere) 38,400 1.125o 30 2 · 10−3 [62]
DG 9,600 2.6o 6 7 · 10−3 [56]
With local refinement
RBF 3,136 variable 20 8 · 10−5 [18]
FV (lat-long grid) – 5o − 0.625o 1-3 2 · 10−3 [56]

Table 1: Comparison between the latest methods for cyclogenesis for a 12 day simu-
lation.

Method No. of nodes Time step !2 Error Ref.
RBF 3,136 15 min 8.8 · 10−6 [19]

5,041 6 min 1.0 · 10−8

DF 8,192 3 min 8.2 · 10−4 [69]
32,768 90 sec 4.0 · 10−4

SH 8,192 (1849) 3 min 2.0 · 10−3 [37]
SE 6,144 90 sec 6.5 · 10−3 [71]

24,576 45 sec 4.0 · 10−5

Table 2: Comparisons for a standard 5 day run (in the spherical harmonic case (SH)
case, discretizations were needed on both lat-long grids and SH coefficient space,
using 8,192 and 1,849 parameters, respectively). SE=spectral elements. DF=Double
Fourier.

middle troposphere (5km above ground) that are responsible for global weather pat-
terns. The mathematical model is represented by the nonlinear shallow water equa-
tions on the sphere where forcing terms are added to keep the pressure system in-
tact. The initial field is given in Figure 2.

(a) (b)

Figure 2: Initial (a) velocity field and (b) height field with N = 3136 for the unsteady
flow test case plotted as orthographic projections centered at 45◦N and 0◦E. The
contours in (a) range from 10600 m to 10100 m in intervals of 50 m.

Comparisons to high-order methods used today are given in Table 2 [19]. The RBF
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Figure 3: Mantle convection: (a) Schematic of problem geometry, (b) Discretization
(RBFs over spherical shells; Chebyshev in radial direction, (c) Example of a turbulent
flow field calculated by the RBF-CH method when starting from a highly regular
initial condition (at Rayleigh number (Ra) = 500,000). Light gray corresponds to
upwelling and dark gray to downwelling.

result is the most accurate to date and is run on a PC desktop in under 12 minutes. It
should be noted that the time steps reported for RBFs is not to maintain time sta-
bility, as in the other methods, but that spatial and temporal discretization errors
match. For stability purposes, RBFs could double the time steps reported above with
the loss of only an order of accuracy. Another striking note, is that unlike the other
methods, RBFs use no filtering to maintain stability. Furthermore, mass and energy
are conserved to 9 decimal places with only 3136 nodes and a 25 day run, without
having it enforced as in a DG method.

1.2.3. Mantle Convection with RBFs in 3D Spherical Geometry. To date,
this is the most advanced application of RBFs to geophysical modeling [78]. The
flows, driven by the heat from the core of the earth, are of great practical inter-
est due to their role in tectonic plate motions, with earthquakes, continental drifts,
etc. as consequences. The governing PDEs require highly accurate nonlinear advec-
tion solvers, elliptic solvers, and treatment of thin boundary layers that near the
inner shell (Earth’s outer core) and near the outer shell (Earth’s crust). They were
approximated in [78] by RBF discretization on each of many concentric spherical
shells, combined with Chebyshev pseudospectral discretization (CH) in the radial di-
rection. The physically realistic situation, when energy transfer is strongly dominated
by convection over diffusion, results in turbulent flows as pictured in Figure 3.

Since no analytic solutions are available, it is common practice to compare certain
computed scalar global quantities from new methods to other published methods
that are in current use in a steady state regime (low Rayleigh number (Ra)). Table 3
contains this comparison for the RBF-CH method. The only other method that is at
least partially spectral is the SH-FD (FD=finite differences), on which Richardson’s
extrapolation was used as to get a highly accurate estimate of the expected solu-
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Method Number of nodes Nuo < VRMS > < T > Ref.
RBF-CH 36,800 3.6096 31.0823 0.21578 [78]
SH-FD extrapolated 3.6096 31.0821 0.21578 [32, 70]
SH-FD 552,960 3.6086 31.0765 0.21582 [32, 70]
FE (CitCom) 393,216 3.6254 31.09 0.2176 [81]
FV 663,552 3.5983 31.0226 0.21594 [70]
FD (Japan) 12,582,912 3.4945 32.6308 0.21597 [42]

Table 3: Comparisons for the standardized Ra=7000 mantle convection bench-
mark. Nuo denotes the Nusselt number, a measure of heat flux across the outer
shell, < VRMS > the volume-averaged rms-velocity, and 〈T 〉 the mean tempera-
ture. (CitCom) is the nationally-funded US model for mantle convection with the
label (Japan) noted the analogue in that country.

tion. We note that the RBF-CH calculation here achieves near perfection in terms
of accuracy even when using a far lower level of discretization. It was also the only
implementation that was run on standard PC hardware.

At Ra=70,000, the present RBF calculations showed an instability that differed from
what has been previously observed, yet theorized by [3] in 1989. It was subsequently
confirmed on the Japanese Earth Simulator (until recently, the largest computer sys-
tem in the world). This episode may have been the first case in which RBF solutions
of PDEs provided new physical insights due to their abilities to highly resolve flows
with a much lower number of degrees of freedom, even compared to pseudospectral
methods. It also demonstrated quite strikingly how effective RBFs can be already on
standard PCs.

2. Principal Lecturers
The principal lecturers, Bengt Fornberg and Natasha Flyer, are the leading re-
searchers in the field. Bengt Fornberg is currently a Professor of Applied Mathematics
at the University of Colorado at Boulder and Natasha Flyer is a scientist at the Insti-
tute for Mathematics Applied to Geosciences and Computational Mathematics Group
of National Center for Atmospheric Research (NCAR). Dr. Fornberg’s main research
interests are in development, analysis, and implementation of numerical methods, in
particular for solving PDEs with a high order accuracy, such as high order finite dif-
ference, pseudospectral and RBF methods. The main application areas include com-
putational fluid dynamics, geophysical and astrophysical flows, and different types
of wave phenomena. Dr. Flyer’s main research interests in the area of RBFs are the
analytical and numerical development for application to geophysical phenomena such
as atmospheric flows, tsunami modeling, and mantle convection. Her work is the first
to demonstrate the viability of the RBF method on the international stage of numer-
ical modeling in the geosciences. Drs. Flyer and Fornberg have received NSF grants
totaling over one million dollars for the study and application of RBFs. In the last five
years, they have given over fifty invited talks on the subject of RBFs on four different
continents. With more than one hundred scientific publications, both of them have
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set the research directions of RBF. Their advice and guidance will be beneficial for
young researchers who are beginners in this field.

The CVs and letter of commitment from the principal lecturers can be found in
the supplementary documents section. We will send their complete CVs and list of
publications to the CBMS office.

3. Conference Organization

3.1. Description of Lectures. As mentioned previously in this proposal, a variety
of methods have been developed for numerically solving PDEs, including finite differ-
ences (FD), finite elements (FE), and pseudospectral (PS) methods. We will start by
following the main theme in the book “A Practical Guide to Pseudospectral Meth-
ods” [20] in showing how classical FD methods naturally evolve into PS methods
when their order of accuracy is increased. Although PS methods can be extremely
cost effective in many applications, they are severely restricted to very simple geome-
tries (such as periodic intervals, rectangular ‘boxes’, or simple variations of such, that
can be obtained through mappings).

We will next introduce the RBF approach as a major generalization of PS methods,
completely abandoning the orthogonality of the PS basis functions in exchange for
obtaining vastly improved simplicity as well as geometric flexibility. By means of the
RBF approach, spectral accuracy becomes easily available also when using completely
unstructured meshes, permitting local node refinements in critical areas. A very coun-
terintuitive parameter range (making all the RBFs very flat) turns out to be of special
interest. It is typically not an optimal one but, in simple cases, RBFs then reduce to
PS methods. This confirms that they naturally can be seen as a major generalization
of the PS approach.

Once we have developed this perspective, we will turn our attention to a number of
issues that are relevant for their fast and stable numerical implementation. A direct
use of equations (1) and (2) is inappropriate in both these regards (stability and
speed), but a number of alternative opportunities have been discovered in the last few
years. After surveying some of these developments (which all are best characterized
as research in progress), we will focus on numerical comparisons between RBFs and
a range of earlier approaches for solving different PDEs, starting with simple elliptic
ones and then gradually progressing towards large scale simulations of flows in various
spherical geometries, as these arise in applications taken from the geosciences.
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The principal lectures will cover these areas of interest as follows:

PL1. Introduction to finite difference (FD) methods and their generalization
into pseudospectral (PS) methods.

PL2. PS methods in periodic and non-periodic cases; Time stepping and
stability considerations.

PL3. Introductions to RBFs

PL4. Issues and algorithms related to numerical conditioning and computational
speed.

PL5. The Runge phenomenon and the Gibbs phenomenon for RBFs.

PL6. RBFs for PDEs.

PL7. Convective flows in spherical geometries.

PL8. Local node refinement: method and application.

PL9. Test problems from the geosciences (with respect to RBFs).

PL10. Modeling in the geosciences (with respect to RBFs).

These principal lectures will be supplemented by talks by the other invited lectur-
ers. These lecturers will be given by Toby Driscoll (University of Delaware), Greg
Fasshauer (Illinois Institute of Technology), Jae-Hun Jung (State University of New
York at Buffalo), Rodrigo Platte (Arizona State University), Scott Sarra (Marshall
University), and Grady Wright (Boise State University).

The conference will begin at 9 am on Monday, June 20, 2011 and run through noon
on Friday, June 24, 2011 (5 days).
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Table 4: Conference Schedule

Monday Tuesday Wednesday Thursday Friday

8:00 - 9:00 Breakfast Breakfast Breakfast Breakfast Breakfast

9:00-9:15 Opening Opening Opening Opening Opening
Remarks Remarks Remarks Remarks Remarks

9:15-10:15 PL1 PL4 PL7 PL9 SL5

10:15-10:30 Q & A Q & A Q & A Q & A Q & A

10:30-11:00 Coffee Coffee Coffee Coffee Coffee
Break Break Break Break Break

11:00-12:00 PL2 PL5 SL1-SL2 SL3 SL6

12:00-12:15 Q & A Q & A SL1-SL2 Q & A Concluding
Remarks

12:15-1:15 Lunch Lunch Lunch Lunch

1:15- 2:15 Panel Panel Panel Panel

2:15-3:15 Informal Informal PL8 PL10
Discussion Discussion

3:15-3:30 Coffee Coffee Coffee Coffee
Break Break Break Break

3:30-4:45 PL3 PL6 Informal SL4
Discussion

3.2. Conference Schedule. The conference will feature ten principal talks (PL),
three each on the first and second days, and two each on the third and fourth days. Six
supplementary talks (SL) will complement these principal talks, two on the third day,
two on the fourth day, and two on the fifth day. Each talk will be followed either by a
question and answer period (Q & A) or by a period of informal discussion. Conference
schedule can be seen in Table 4. As can be seen in Table 5, in each of the first four days
we will have a panel discussion on a topic related to that day’s principal lecture. There
will also be time set aside for informal discussions.
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Table 5: Panel Discussion Schedule

Monday Pseudospectral methods, stability, and time-stepping.

Tuesday Numerical issues related to the implementation of RBFs
and discussion of open issues and problems in the efficient and
accurate implementation.

Wednesday Implementation of RBFs in complex geometries.

Thursdays Various types of RBF applications, and discussion
of future directions of RBFs.

3.3. Advertising and Reaching Underrepresented Groups. The conference
will be widely advertised by announcements in the SIAM, AMS, and MAA newspapers
and websites, and by email lists such as NA-Digest. The PI and Co-PIs will also
send emails to their colleagues at other institutions, and will collaborate closely with
other departments in the region to ensure that faculty and students are aware of
this opportunity. A separate travel fund will be allocated for graduate students and
underrepresented group participants.

The PI and Co-PIs will set up a website for the conference to update participants and
will use this website to publish the results of the conference, including the powerpoint
or pdf slides of the speakers where available. Lecture notes will also be made available
through the website.

3.4. Local Arrangements. The conference will be held on the campus of Uni-
versity of Massachusetts Dartmouth (UMASSD), one of the five campuses of the
University of Massachusetts state system. Our 700-acre UMASSD campus is located
on the South Coast of Massachusetts, between Providence and Cape Cod. This cam-
pus is located in southeastern Massachusetts, one hour from Boston, and 30 minutes
from Providence, Rhode Island. It is thus conveniently placed near two international
airports, Logan (BOS) and T.F. Green (PVD).

The buildings of the campus were designed by internationally renowned Modernist
architect Paul Rudolph beginning in the early 1960’s. Both the exterior and interior
of each building of rough concrete, with large windows bringing in the beauty of
the outdoors, and open atriums providing places to socialize. The university also
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has hundreds of acres of undeveloped green space, including extensive wooded areas,
grasslands, wetlands and ponds, as well as numerous footpaths to enable exploration
of these natural areas of the campus.

The PI, Dr. Saeja Kim, and Co-PIs Drs. Sigal Gottlieb, Alfa Heryudono, and Cheng
Wang, are all faculty members at the University of Massachusetts Dartmouth and
have made the local arrangements for the conference.

Conference Arrangements: The conference will be held on campus, with lecture
halls and seminar rooms available for the lectures, coffee breaks, and panel discussions.

Accomodations: A block of ten apartments will be reserved for this conference
at Woodlands Residence Hall. Each apartment has either two bedrooms or four bed-
rooms, 2 full baths, and a central air system which is controllable. The apartments are
fully furnished with a double bed, desk, chair, and built-in closets. The living/common
space area has a television stand, couch, chair, and tables. The kitchen area of the
apartment is equipped with a ceramic-top stove, refrigerator/freezer, ample cabinet
space, 4 barstool chairs, as well as an eat-in alcove. The bedrooms, kitchen, and
bathroom areas are all tiled. The living/common areas and hallways of the apart-
ment are carpeted. Participants will have access to both wired and wireless internet
service. Ample parking is available.

Lecture Rooms: The Woodlands residence hall features a 3,000 square foot function
room capable of seating 300 people which can be separated into 3 sections at 1,000
sq. feet a piece, and is equipped with audio/visual equipment for the lecturers to
present their talks. This venue also has six other smaller meeting rooms/areas which
will be available to us for lectures, coffee breaks, informal gatherings, and panel
discussions.

Dining: Meals will be served either at the Cafeteria or in the Woodlands residence
hall by the campus catering service. Coffee and pastries will also be provided. A con-
ference banquet will be held on Wednesday night.

4. PI’s and Co-PIs’ Experience and Contributions
PI and Co-PIs have successful experiences in organizing minisymposiums related to
RBF and higher order methods in PDEs at SIAM annual meeting, ICOSAHOM,
International conference on advances in Scientific Computing, SIAM regional meeting,
etc.

PI Saeja Kim (Associate Professor of Mathematics at UMass Dartmouth):
Dr. Kim’s research is focused on the areas of computational algebra, applied mathe-
matics, and scientific computing. Recently she and her collaborators have published
papers in the area of solid mechanics [8, 47]. She is currently carrying out research
on edge detection, the development of post-processing methods, and a stability study
of adaptive RBF simulations of convective flows [40, 41], as part of a team of com-
putational mathematicians at UMass Dartmouth. Dr. Kim has been central to the
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NSF-funded CSUMS project where she serves as Director of Assessment and Student
Research.

Co-PI Sigal Gottlieb (Professor of Mathematics at UMass Dartmouth):
Dr. Gottlieb’s overall research focus is the development of spatial and temporal meth-
ods for the efficient simulation of hyperbolic partial differential equations with shocks.
She is internationally recognized as an expert on strong stability preserving (SSP)
time discretizations, and is currently funded by AFOSR grant FA9550-0610255 to de-
velop SSP methods for the time evolution of hyperbolic partial differential equations,
including problems requiring efficient and stable treatment of multi-scale phenom-
ena. Together with Jae-Hun Jung of SUNY Buffalo and Anne Gelb of Arizona State
University, Dr. Gottlieb is funded by NSF grant DMS-0608844 to develop hybrid spa-
tial discretizations including spectral multi-domain penalty methods and weighted
essentially non-oscillatory (WENO) methods, as well as radial basis function meth-
ods (with Alfa Heryudono and Saeja Kim). Dr. Gottlieb is the leader of the NSF-
funded CSUMS project Research in Scientific Computing in Undergraduate Educa-
tion (RESCUE) (grant number DMS-0802974) for the training of undergraduates in
the computational sciences.

Co-PI Alfa Heryudono (Assistant Professor of Mathematics at UMass Dartmouth):
Dr. Heryudono’s research interest is scientific computing and numerical methods for
partial differential equations, specifically radial basis function methods, pseudospec-
tral methods, and tear film dynamics. He is doing research in RBF interpolation on
irregular geometry [34] and is developing a new adaptive method for radial basis
function methods in time independent and time dependent problems [13, 57]. He is
interested in the implementation of pseudospectral methods to solve a fourth-order
nonlinear equation arising as a model of the blink cycle process in human eyes [35]. He
is also working on RBF methods for time-dependent PDEs, in collaboration with
Cheng Wang, Sigal Gottlieb, and Saeja Kim from UMass Dartmouth, Jae-Hun Jung
from SUNY Buffalo, and Scott Sarra from Marshall University. Dr. Heryudono has a
joint research with Elisabeth Larsson and Axel Målqvist from the division of scientific
computing of Uppsala University in Sweden working on a hybrid method finite ele-
ment and RBF for problems in plate mechanics, for which they were recently awarded
a Marie Curie FP7 grant beginning in June 2010.

Co-PI Cheng Wang (Assistant Professor of Mathematics at UMass Dartmouth):
Dr. Wang’s primary research interest is the numerical solutions of nonlinear PDEs
arising in natural sciences. He has accumulated experiences of the fourth order finite
difference and pseudospectral schemes in the numerical simulation of fluid dynamics,
geophysical fluid, electro-magnetics, and epitaxial thin film growth (see [16, 36, 50–
52, 72, 75] for more details). He is currently focusing on two areas. The first is compu-
tation of incompressible fluid, including both 2-D and 3-D Navier-Stokes Equations
(NSE), along with various models in Geophysical Fluid Dynamics (GFD). In partic-
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ular, the fourth order finite difference, collocation spectral method and radial basis
function (RBF) method are taken into consideration. The second is the numerical
simulations of a set of bistable gradient system arising in material science and mathe-
matical biology, such as phase field crystal (PFC) equation, Cahn-Hilliard-Hele-Shaw
(CHHS) equation with a potential application in tumor growth model, and various
epitaxial thin film growth models, with or without slope selection. Numerical solvers
for the potentially highly nonlinear convex splitting schemes with an optimal effi-
ciency for these equations are the main challenges. For both areas, large scale 3D
numerical simulations with the aid of MPI parallel implementation are carried out.
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