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Introduction to FD formulas:                                                                 

Definition of first derivative; simplest FD formula:

df
dx

= limhd0
f(x + h) − f(x)

h

Corresponds to 1st order FD approximation; Taylor expand:

f ∏(x) =
f(x + h) − f(x)

h
+O(h1)

General approach to calculate FD formulas:

With nodes , the FD weights  for approximating the operator L at the{x1, x2,¢, xn} {w1,w2,¢,wn}
location  can be obtained by solving the linear systemx = xc

.
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=

L1|x=xc
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§

Lxn−1|x=xc

The successive lines enforce that the weights lead to the correct results for the functions 
 and thus, by linearity, for all polynomials up through degree 1, x, x2,¢, xn−1, n − 1.

This approach generalized to RBF-FD stencils.



Numerous more effective approaches are available for creating FD formulas:      

Padé - based  algorithm:
Fornberg (1998) In Mathematica:

t = PadeApproximant[xs(Log[x]/h)m,{x,1,{n,d}}]; 
CeofficientList[{Denominator[t],Numerator[t]},x]

Examples: s=1,d=0,n=2,m=2
;
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 f ∏∏(x) = {f(x − h) − 2f(x) + f(x + h)}/h2

s=1,d=2,n=2,m=2
; ; ;
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AB3f (x + h) = f(x) + h
12

(23f ∏(x) − 16f ∏(x − h) + 5f ∏(x − 2h))

Adams-Bashforth (ABp) s = 1-p, d = p-1, n = 1, m = 1,
Adams-Moulton (AMp) s = 2-p, d = p-1, n = 1, m = 1,
Backward Differentiation (BDp) s = p, d = 0, n = p, m = 1.



Example of algorithm for arbitrarily spaced nodes:                                                  
    For example, the statement  weights(0,-2:2,6) returns the output

function c=weights(z,x,m)
% Calculates FD weights. The parameters are:
  %  z   location where approximations are to be ac curate,        0        0        1.0000   0        0
 %  x   vector with x-coordinates for grid points,      0.0833  -0.6667   0        0.6667  -0.0833
 %  m   highest derivative that we want to find wei ghts for     -0.0833   1.3333  -2.5000   1.3333  -0. 0833
 %  c   array size m+1,lentgh(x) containing (as out put) in     -0.5000   1.0000   0       -1.0000   0.5 000
 %      successive rows the weights for derivatives  0,1,...,m.      1.0000  -4.0000   6.0000  -4.0000   1.0000
 n=length(x); c=zeros(m+1,n); c1=1; c4=x(1)-z; c(1, 1)=1;      0        0        0        0        0
 for i=2:n      0        0        0        0        0
    mn=min(i,m+1); c2=1; c5=c4; c4=x(i)-z;
     for j=1:i-1
        c3=x(i)-x(j);  c2=c2*c3;
        if j==i-1
           c(2:mn,i)=c1*((1:mn-1)'.*c(1:mn-1,i-1)-c 5*c(2:mn,i-1))/c2;
           c(1,i)=-c1*c5*c(1,i-1)/c2;
        end
        c(2:mn,j)=(c4*c(2:mn,j)-(1:mn-1)'.*c(1:mn-1 ,j))/c3;
        c(1,j)=c4*c(1,j)/c3;
     end
     c1=c2;
  end

Examples of tables for centered FD approximations:                                               

First derivative e

Second derivative e

Note that the limits of increasing
orders exist and take very simple
forms. 



Examples of FD approximations for the Laplacian in 2-D and 3-D:                        
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;
1

1 −4 1
1

/h2 O(h2)

− 1
12
4
3

− 1
12

4
3 −5 4

3 − 1
12

4
3

− 1
12

/h2 O(h4)

 
1 4 1

4 −20 4
1 4 1

/(6h2)
 

 
 
 
 

O(h2) when approximating �u
O(h4) when approximating a solution to �u = f by means of
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- Implicit (compact) approximations can increase order without increased computational cost.
- Diagonal dominance is possible also for approximations above second order accuracy.
- RBF-FD formulas will be designed to generalize approximations such as the ones above to meshfree

settings (and be 'immune' to singularities, no matter how nodes are scattered).  



Method of Lines (MOL) time stepping                                                                       

Concept: Discretize in space and then time step by a standard ODE procedure

In case of periodic problems on equispaced lattices, von Neumann stability analysis is
available. 

Else, including for RBF-FD methods, find the eigenvalues of the spatial operator, and then
choose the ODE solver and the time step k so the eigenvalues fall within the solver's stability
domain. 

ODE stability domain: 

Apply the ODE solver to the constant coefficient ODE   and find the region in the complexy ∏ = �y
 for which there are no growing solutions.� = �k

Example: Find the stability domain for Forward Euler:  y(t + k) = y(t) + k y ∏(t).

Applied to , the scheme becomes  With , they ∏ = �y y(t + k) = (1 + �k)y(t). � = �k
condition for no-growth becomes , i.e. a circle of radius 1 centered at |1 + �| [ 1
� = −1.



Illustrations of the stability domains for some standard ODE solvers       
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Recall from the Introduction to FD Methods                                        

First derivative e

Magnitude of weights for increasing orders of accuracy



Limiting FD method in the case of periodic data                                

The calculation can be carried out numerically as a convolution between the data and the equivalent
one-period wide stencil

The result becomes equivalent to the periodic Fourier-PS method, which typically is implemented by:

i. Take FFT of data
ii. Take analytical derivative of the obtained (interpolating) trigonometric polynomial
iii. Return (by a second FFT) to physical space 



How well does this work?  A first periodic PS example:                    

2-D Elastic Wave equation: P-wave transition through a variable density medium
Fornberg (1987)

 

 

 

 

 

 

 

�u t = fx + gy
�v t = gx + hy
f t = (� + 2�)ux + �vy
g t = �vx + �uy
h t = �ux + (� + 2�)vy



A second periodic PS example:                                                           

Nonlinear instabilities: Modified KdV equation:
Fornberg and Whitham (1978)

Growth rates for different
side bands in the mKdV
equation:

0.01302145453, 11
0.02207679434, 10
0.01846433835,   9
0.01019161886,   8

Growth rate �Dominant
sideband modes

Pioneering calculation by Zabusky and Kruskal (1965): Discovery of  solitons.

u(x, t + k) − u(x, t − k)
2k

+ 1
3

(u(x + h, t) + u(x, t) + u(x − h, t)) $
u(x + h, t) − u(x − h, t)

2h
+
u(x + 2h, t) − 2u(x + h, t) − 2u(x − h, t) + u(x − h, t)

2h3
= 0

Second order: For 10 -12  accuracy, need about 10 8 nodes in space; stability cond k/h 3 < const => k about 10 -18. If 1 µs/node/time step,
need 10 23 seconds; cf. age of universe about 10 17 seconds.



A third periodic PS example:                                                           

1-D pulse propagation in a discontinuous medium:

1-D acoustic wave equation:

 
 
 
ut = vx
vt = c2(x)ux

where

c(x) =
 

 
 
1 if −1 < x < 0
1
2 if 0 < x < 1

and IC: .u(x, 0) = 2v(x, 0) = e−1600(x− 1
4 )2



A fourth periodic PS example:                                                           

Double Fourier Method for convective flow over a sphere:
Merilees (1973), Fornberg and Merrill (1997)

Governing equation   Convection: Grid display� = �
2

− 0.05

Øh
Øt

+ u
� cos �

+ ��
Øh
Ø�

= 0

where

 

 
 
u = u0(cos� cos� − sin� sin�)
v = −u0 cos� sin�

Numerical solution after one revolution,  grid:64 % 32



Errors when approxi-  

mating a step function

With FDp in space, the slope

'flattens' in time as .O
1

p+1 t

For convective PDEs, it is thus
advantageous to use high
order approximations even if 
the transported solution does
not have the matching smooth-
ness.

Same will hold in RBF contexts.



Non-periodic PS methods: Background                                               

Runge Phenomenon:

n = 21 and n = 41 equispaced interpolations of

  over [-1,1]f(x) = 1
1 + 16x2

Exponential (spectral) convergence in middle;
exponential divergence at the edges.

Chebyshev-type node clustering equals out
errors across the interval. Magnitudes of one-sided FD weights for d/dx.



Requirements for PS expansion functions                                          

Want to interpolate discrete data  as  . Requirements on choice of :u(x i), i = 0, 1,¢,n u(x) = 	
k=0

n

ak
k(x) 
k(x)

1. The expansion must converge rapidly for smooth functions	k=0
n ak
k(x)

2. Given coefficients , it should be easy/fast to find  such that ak bk
d
dx 	k=0

n

ak
k(x) = 	
k=0

n

bk
k(x)

3. It should be fast to convert between coefficients  and node values .ak, ki = 0, 1,¢,n u(x i), i = 0, 1,¢,n

Trig functions are the 'obvious' choice in the periodic case. Jacobi-type orthogonal polynomials are 'natural'
in non-periodic case, e.g.



Associated node clustering at edges indeed controls the RP          

Illustration be means of Lagrange's interpolation formula:

pk(x) =
(x − x0) $¢ $ (x − xk−1)(x − xk+1) $¢ $ (x − xn)
(xk − x0) $¢ $ (xk − xk−1)(xk − xk+1) $¢ $ (xk − xn)

N = 10
Equi-spaced Chebyshev

Issue will arise also for RBF methods near boundaries.



Lebesgue constants                                                                              

Equispaced Chebyshev
Key formula: Relates interpolation error 

to the optimal polynomial

||f − PN
interp

|| [ (1 +�N)||f − PN
optimal

||

(max norn, NO restriction on f(x))

   Add the magnitudes of all the curves above: Examples of polynomial Lebesgue constants:

  �N
eq = O 2N

N logN

  �N
Leg = O( N )

 �N
Cheb = 2

� (logN + � + log
8
� ) + o(1)

The peak heights of these resulting curves are known   �N
Opt = 2

� (logN + � + log
4
� ) + o(1)

as the interpolation method's Lebesgue constant.

These values offer a precise measure of the inter-
polation procedures' quality (sensitivity to pertur-
bations)

The concept is used also for RBF interpolation. 



MOL discretization                                                                                 

Model problem:     MOL: 
Øu
Øt

+ Øu
Øx

= 0, u(−1) = 0;
Ø

Øt
u = D u

Product Du can be evaluated via FFTs 

or direct matrix vector multiplication.%

For choice of time stepping scheme 
and time step, inspect the eigenvalues 
of the DM. In the present case

:

High divergence rate spurious eigenvalues
an immediate consequence of the 
quadratic node clustering.

When later coming to RBFs, key issue
will be to handle boundaries with much
less ODE stiffness.



Non-periodic PS methods offer very limited geometric flexibility    

Spectral Elements:

Concerns include errors/stiffness from
artificial internal boundaries and complexity
in cases of local refinement. 

Hybrid FD-PS combinations:
(Driscoll and Fornberg, 1999)

Example: 2-D TE (transverse electric) Maxwell's equations.

 

 

 

 

 

 

 


(x, y) ØEx
Øt

= ØHz
Øy

− �(x, y)Ex


(x, y)
ØEy

Øt
= − ØHz

Øx
− �(x, y)Ey

�(x, y) ØHz
Øt

= ØEx
Øy

−
ØEy

Øx
− �&(x, y)Hz

 

 

 

 

 

 

 

Ex,Ey Electric field

Hz Magnetic field


, � Permetivity, permeability

�, �& Electric and magnetic resistivity
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Presented at NSF-CBMS Regional Research Conference
University of Massachusetts, Dartmouth, by

Bengt Fornberg and Natasha Flyer 



RBF idea,   In pictures:                                                                        

RBF idea,   In formulas:                                                                       

Given scattered data (xk , fk), k = 1, 2, ... , N,  in  d-D,   the RBF interpolant is

s(x) = �
k=1

N

�k �(|| x − x
k
||)

The coefficients   can be found by collocation:    ,  k = 1, 2, ... , N :�k s(x
k
) = fk

�(||x
1

− x
1
||) �(||x

1
− x

2
||) £ �(||x1 − x

N
||)

�(||x
2

− x
1
||) �(||x

2
− x

2
||) £ �(||x

2
− x

N
||)

§ § •§

�(||x
N

− x
1
||) �(||x

N
− x

2
||)£ �(||x

N
− x

N
||)

�1
§

§

�N

=

f1
§

§

fN



Inclusion of constant and polynomial terms:                                       

Examples in 2-D:

  with constraint     s(x) = �
k=1

N

�k �(|| x − x
k
||) + �1 �

k=1

N

�k = 0

with constraints   s(x) = �
k=1

N

�k �(|| x − x
k
||) + �1 + (�2x + �3y) �

k=1

N

�k = �
k=1

N

�kxk = �
k=1

N

�kyk = 0

Four main purposes:

1. The A-matrices for the modified systems may become positive (or negative) definite in
cases where the original system lacked these features

Examples: Already including constant will create negative definite system matrices for  and �(r) = r
.�(r) = 1 + (�r)2

Including also linear terms creates positive definite matrices for   and  �(r) = r2 log r
.�(r) = r3

2. The interpolant  becomes less prone to oscillations - routinely utilized in RBF-FDs(x)
contexts.

3. Saturation errors may get reduced (or eliminated).

4. The inclusions may improve RBF accuracy at boundaries

Example: With ,  typically diverges as  for  increasing. The two versions�(r) = r3 s(x) O(||x||3) ||x||

above reduce this to  and to , respectively.O(||x||2) O(||x||1)



Many types of RBFs are available:                                                       

Piecewise smooth  φ(r) Infinitely smooth  φ(r)

Cubics TP splines Compact Multiquadric   Gaussian Inverse quadratic

                                   support                                    r3 r2 log r 1 + (� r)2 e−(� r)2 1
1 + (� r)2

Interpolation guaranteed nonsingular for
all commonly used radial functions.

- Piecewise smooth RBFs:
- algebraic accuracy (cf. cubic splines)
- often only mild Gibbs oscillations

- Infinitely smooth RBFs:
- spectral accuracy (if no Runge phenomenon)

While compactly supported RBFs (e.g. Wendland functions) can be highly effective in certain applications, we will not focus
on them in the present survey because (i) only algebraic accuracy, and (ii) compactness is lost when forming derivative
approximations (Differentiation Matrices; DMs).



Non-singularity of the A-matrix                                                              
Bochner (1933), Schoenberg (1938)

For Gaussian (GA) RBF:  

1. Prove that A is positive semidefinite

Fourier transform of GA in d dimensions:

e−||�||2 = 1

(4�)d/2 ¶Rd e
−||x||2/4 e− i x$� dx

Let    be an arbitrary column vector. Then:� = (�1,�2,¢,�n)T

�TA� = � j=1n �k=1
n � j �k e

− ||x
j
−x
k
||2

= � j=1n �k=1
n � j �k

1

(4�)d/2 ¶Rd e
−||x||2/4 e

− i x$(x
j
−x
k
)
dx

= 1

(4�)d/2 ¶Rd e
−||x||2/4 � j=1

n �k=1
n � j �k e

− i x$(x
j
−x
k
)
dx

  

  (�j=1n � j e
− i x$x

j )(�k=1n �k e
i x$x

k ) = �m=1
n �m e

− i x$x
m

2
m 0

2. Refine argument to show that A in fact is positive definite

Idea:  If  xm  are distinct, show that a function   cannot be identically zero unlessf(x) = �m=1
n �m e

− i x$x
m

all the coefficients αm are zero.

Additional RBF classes that give nonsingular A-matrices: 

- Any   such that    and   .�(r) �(�) > 0 ¶Rd �(||x||)2dx<∞
- Any   such that    is the Laplace transform of a non-negative function�(r) �( r )



Comletely Monotone functions                                                        

Definition 1: A  function  which has a bounded first derivative at the origin, is said to beC∞(0,∞) 	(r)
completely monotone if and only if  for  and (−1)k d

k

drk
	(r) m 0 r > 0 k = 0, 1,¢

Definition 2: A function ,  is said to be completely monotone if and only its inverse Laplace	(r) r m 0,
transform  is nonnegative (i.e.  when ).�(s) �(s) m 0 	(r) = ¶0

∞
�(s) e−srds

Theorem: If  is completely constant (but not constant), then the RBF matrix A based on the radial	(r)
function  will be positive definite.�(r) = 	(r2)

Example: Show that  is positive definite when .�(r) = 1
(1 + r2)
 
 > 0

Since , we need to consider . Then:�(r) = 	(r2) 	(r) = 1
(1 + r)


Use Definition 1:  if  (−1)k d
k

drk
	(r) = (� i=0k−1(
 + i))/(1 + r)
+k m 0 
 > 0, k = 0, 1,¢

Use Definition 2:  if  �(s) = e−ss
−1/�(
) > 0 
 > 0.



Comletely Monotone functions:                                                         

The proof that Definition 2 leads to the stated theorem follows along the lines of the following examples:

Taking the inverse Laplace transform of  for different radial functions  gives formulas such as�( r ) �(r)

IQ: 1
1 + (�r)2 = ¶

0

∞
e−s e−s(�r)2 ds

IMQ: 1

1 + (�r)2
= ¶

0

∞ e−s

�s
e−s(�r)2 ds

Direct demonstration that IQ is positive definite:

Whenever the factor in front of   is positive, we observe (using here IQ as an illustration)e−s(�r)2

.�T A� =�j=1
n �k=1

n
� j�k

1
1 + �2||x

j
− x

k
||2

= ¶
0

∞
e−s �j=1

n �k=1
n
� j�k e

−s�2 ||x
j
−x
k
||2
ds

From the nonsingularity proof for GA RBFs, we know that the double sum is positive whenever the vector  
 is not identically zero. Therefore, the integral and, with that, the quantity  will also be�= [�1,�2,¢,�n]T �T A�

positive, i.e. A is a positive definite matrix.

A variation of the Completely Monotone results above shows that MQ can never be singular 

 Micchelli (1984), particularly simple proof by Powell (2005).  



Numerical conditioning, and the flat RBF limit  (ε →ε →ε →ε → 0)                           

Classical basis functions are usually RBFs are translates of one

highly oscillatory single function - here  �(r) = e−(� r)2

       ε = 10

        ε = 1

       ε = 0.1

       ε = 0.01

In case of 41 scattered nodes in  1-D: cond(A) = ,    det(A) = .O(�−80) O(�1640)

   2-D: cond(A) = ,    det(A) = .O(�−16) O(�416)

Exact formulas available for any number of nodes in any number of dimensions
Fornberg and Zuev (2007)

Extreme ill-conditioning typical as ε → 0. 



Why are flat (or near-flat) RBFs interesting ?                                    

- Intriguing error trends as ε → 0

'Toy-problem' example:  41 node MQ interpolation of  f(x1,x2) = 59

67 + (x1 + 1
7 )2 + (x2 − 1

11 )

- RBF interpolant in 1-D reduces to Lagrange's interpolation polynomial   
Driscoll and Fornberg (2002)

- The ε → 0 limit reduces to 'classical' PS methods if used on tensor type grids.

- The RBF approach generalize PS methods in many ways:
- Guaranteed nonsingular also for scattered nodes on irregular geometries

(suggests RBF-FD mehtods)

- Allows spectral accuracy to be combined with local mesh refinement

- Best accuracy may be obtained for non-zero ε.

      Solving    followed by evaluating   A� = f s(x, �) =�k=1
N
�k �(||x − x

k
||)

      is merely an unstable algorithm for a stable problem



Rough estimate of the A-matrix ill-conditioning                                 

RBFs based on odd powers of r  (such as  and ) feature a discontinuous derivative at the�(r) = r �(r) = r3
origin, and therefore (low order) algebraic accuracy.

RBFs based on even powers of r  (such as  and ) lead generally to singular A-matrices:�(r) = r2 �(r) = r4

Example: Using  in 1-D will lead to an interpolant of the form  , which is a�(r) = r2 s(x) =�k=1
n
�k(x − xk)2

parabola, and is therefore unable to interpolate more than  points.n = 3

One finds similarly that 

(1)�(r) = c0 + c1(�r)2 + c2(�r)4 +¢ + cm(�r)2m

in d-D can interpolate at most   points (recovering the value  for ).n = 2m + d
m + d

m + d
d

n = 3 m = d = 1

Example: With  and ,  will give a singular A-matrix up through . Nonsingularity for ann = 300 d = 2 �(r) m = 16
A-matrix will therefore depend on the further terms, omitted in (1)

 ,c17(�r)34 + c18(�r)36 +¢

i.e. an -sized perturbation of the entries of A will suffice to make it singular.O(�34)

The estimate above turns out to be sharp in case we allow spatially varialbe ε; else it turns out that
-sized perturbations suffice to make A singular. O(�46)

Note that the estimate did not require any specific knowledge about the radial function φ(r).



RBF Conditioning                                                                                 
Fornberg and Zuev (2007)

Eigenvalue patterns for the RBF A-Matrix:

Example: Scatter n = 51 nodes in 2-D; use MQ

   Calculate eigenvalues as functions of ε. 

1 e - value    O(1)

2 e - values  O(ε2)
3 e - values  O(ε4)
4 e - values  O(ε6)

   etc. until last e - value is reached.

Pattern for groups independent of:

- Number of nodes

- How nodes are scattered

- RBF type (GA, IQ, IMQ, MQ, ...)
(certain types, such as BE, can be exceptional)



Different eigenvalue patterns for different geometries                     

Number of eigenvalues of different sizes:

   ...282115106313-D non-periodic

   ...131197531On spherical surface

   ...76543212-D non-periodic

   ...22222211-D on circle periphery

   ...11111111-D non-periodic

   ...121086420

Power of εGeometry

 with  α(n) shown below:Cond (A) = 1 / ��(n)

   ...166763414403-D non-periodic

   ...632198621860On spherical surface

   ...8922808826602-D non-periodic

   ...100,00010,0001,0001001001-D on circle periphery

   ...199,99819,9981,9981981801-D non-periodic

   ...100,00010,0001,000100101

Number of nodes  nGeometry

Closed formulas available:

Example:   2-D non-periodic: Cond (A) = O(1 / �2[( 8n−7 −1)/2])
where [...] denotes integer part (Matlab 'floor') 



Some variations in the eigenvalue pattern formulas                         

Random 'noise' on the ε-values:

Choose for the different nodes {random numbers on [0,1]}, and then let . �k = � $ � d 0

   ...49362516941variable3-D non-periodic

   ...28211510631const3-D non-periodic

   ...131197531variableOn spherical surface

   ...131197531constOn spherical surface

   ...131197531variable2-D non-periodic

   ...7654321const2-D non-periodic

   ...2222221variable1-D on circle periphery

   ...2222221const1-D on circle periphery

   ...2222221variable1-D non-periodic

   ...1111111const1-D non-periodic

   ...121086420parameter

Power of εShapeGeometry

- Conditioning improved in non-periodic cases (suggests that boundary effects play a role)
- Suggestive that A-matrix singularity, while possible, might be unlikely
- Practical utility unclear (e.g. effect on accuracy) 



Some variations in the eigenvalue pattern formulas                         

Degradation in case of lattice-based node layouts (2-D non-periodic):

Number of eigenvalues of sizes �0, �2, �4,¢

Halton 1 2 3 4 5 6 7 8 9 10 11 12 13  14  15 16 17 | 15
Hexagonal 1 2 3 4 5 6 7 8 9 10 11 12 13  14 |14 14 14   14 | 7
Cartesian 1 2 3 4 5 6 7 8 9 10 11 12 13 |12  11 10   9     8   7  6  5  4  3  2  1

resulting in condition numbers  respectively.O(�−34), O(�−36), O(�−48),

There is a severe degradation in the Cartesian case in terms of conditioning (AND in accuracy). 



Some examples of different limits as ε → 0                                                
Result depends both on node distribution and on type of basis function

MQ, IM, IQ,GA,J0 all MQ, IM, IQ, GA same limit,
different limits; all pol. degree 2;  J0 different
polynomials degree 2. limit, pol. degree 3. 

All limits different; all All converge to the to the
polynomials degree 3. same limit.

MQ, IM, IQ diverge;
GA, J0 converge to
different limits

What is the widest class of radial functions possible such that divergence will never occur, no matter how
the nodes are distributed?

Result true for GA: Conjectured 2004 (Fornberg, Wright, Larsson), Proved 2005 (Schaback)
BE widest class possible: Conjectured 2006 (Fornberg, Larsson, Wright)
.



A closed form expression for RBF interpolants                                       

For cardinal data  , the RBF interpolant  becomesyk =
 

 
 
1 k = 1
0 otherwise

s(x) = �
k=1

N

�k �(||x − x
k
||)

s(x) =  

det

�(||x − x
1
||) �(||x − x

2
||) £ �(||x − x

n
||)

�(||x
2

− x
1
||) �(||x

2
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||)
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− x
1
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1
− x
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||) £ �(||x1 − x

n
||)

�(||x
2
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1
||) �(||x
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||)

With     we get�(r) = a0 + a1(� r)2 + a2(� r)4 + a3(� r)6 +¢

s(x) = 1
�2p s−2p(x) + 1

�2p−2 s−2p+2(x) +¢ + 1
�2

s−2(x) + s0(x) + �2s2(x) + �4s4(x) +¢

Divergent part; rarely present

Flat basis function limit (generalized pseudospectral method)

Corrections to flat basis function limit

Some issues: -   When is the divergent parp absent?

- Can we evaluate the individual s(x)-functions numerically?
(Will be achieved by the Contour-Padé algorithm)



Example                                                                                                   

f (x, y) = 59

67 + (x + 1
7 )2 + (y − 1

11 )2

sampled at scattered 
points in [ 0, 1]×[ 0, 1]

Multiquadric interpolant: s(x,εεεε) = s0(x) + εεεε2 s2(x) + εεεε4 s4(x) + εεεε6 s6(x) + ...    where

s0(x) s2(x) s4(x) s6(x)

   �   | max error | = 9.4 · 10 -9



Is  εεεε = 0 best?      Typically NOT                                                              

Function  Sampling (25 scattered points)f (x,y) = 1

25 + (x − 1
5 )2 + 2y2

Max interpolation errors over full square when 
using

Gaussians (GA)
Inverse quadratics ( IQ)
Multiquadrics (MQ)

- Solid parts (below εεεε = 0.3) can not be computed 
directly with RBF-Direct - requires a stable algorithm.
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Example                                                                                                   

f (x, y) = 59

67 + (x + 1
7 )2 + (y − 1

11 )2

(same as in last example)

sampled at Cartesian 
points in [ 0, 1]×[ 0, 1]

Multiquadric interpolant: s(x,εεεε) =   s0(x) + εεεε2 s2(x) + εεεε4 s4(x) + εεεε6 s6(x) + ...    where1
�2

s−2(x) +

     s-2(x)    s0(x)  s2(x)        s4(x)    s6(x)

  �   | max error | = 3.2 · 10 -8



The Bessel class of oscillatory radial functions                                   
Schoenberg (1938), Richards (1985), Fornberg, Larsson, Wright (2006), Flyer (2006)

d = 1 �d(r) =
J d
2 −1(� r)

(� r) d
2 −1

d = 2

Converges to GA in limit of d d ∞.

d = 3

d = 4

- The Fourier transform of φd(r) has compact support: 

�̂(�) = 1
2� ¶

−∞

∞

�d(r) e−i�rdr =
 

 
 (1 − (�� )2)

d
2 −1 − 1� [ � [ 1

�

0 otherwise

- RBF interpolants based on φd(r) are non-singular for arbitrary point distributions in up to d dimensions.

Proof similar to the one for GA RBFs, but based on  .�d(||x||) = 1
(2�)d/2 ¶||�||=1 e

i x $� d�

- Exact polynomial reproduction of arbitrary order on infinite lattice in d-D.

- When data is located along a straight line, RBF interpolants based on φd(r) will never diverge off the

line.



Is the BE class the most general one possible which will never diverge

in the ε → 0 limit?

With 4 points x1, x2, x3, x4 along a line (x-axis) and the interpolant evaluated at (x,y) off the line, it will never
diverge. For more points: divergence unless the coefficients in  satisfy�(r) = a0 + a1(�r)2 + a2(�r)4 +¢

5 points a1a2
2 − 2 $ 3

2
a1
2a3 + 3

1
a0a2a3 = 0

6 points a2a3
2 − 2 $ 4

3
a2
2a4 + 4

2
a1a3a4 = 0

7 points a3a4
2 − 2 $ 5

4
a3
2a5 + 5

3
a2a4a5 = 0

8 points a4a5
2 − 2 $ 6

5
a4
2a6 + 6

4
a3a5a6 = 0

If this pattern continues indefinitely, the following theorem will hold:

Theorem: The ONLY type of RBFs which will never diverge off a straight line is the BE type

  .�d(r) =
J d
2 −1(� r)

(� r) d
2 −1

Conjecture: RBFs based on  are unique in never diverging (in < d dimensions), no matter how the�d(r)
(distinct) data points are located.

Noted above: GA RBFs form a special limiting case of the BE class, due to the relation

 .lim
�d0

2� �!
J�(2 � r)
(2 � r)

= e−r2

Also: Formulas for the RBF-QR algorithm in general 2-D domain (obeying the necessary 'counting
rule') has so far only been found for GA and BE RBFs.



 Numerical computations for small values of  εεεε (near-flat RBFs)      

It is possible to create algorithms that completely bypass ill-conditioning all the way

into ε→ 0  limit, while using only standard precision arithmetic: 

Concept:   Find a computational path from  f   to s(x,ε) that does not go via the
ill-conditioned expansion coefficients  λ. 

Contour-Padé algorithm First algorithm of its kind; established that the concept is possible

Based on contour integration in a complex ε-plane. 
Limited to relatively small N-values

 First version (Fornberg and Wright, 2004).

FFT-based rational approximation (Gonnet, Pachón, Trefethen, 2011).

RBF-RA (Wright and Fornberg, in progress).

RBF-QR method    Initially developed for nodes scattered over the surface of a sphere
No limit on N; cost about six times that of RBF-Direct 

Original version (for nodes on sphere) (Fornberg and Piret, 2007).

Versions for 1-D, 2-D, and 3-D (Fornberg, Larsson, and Flyer, 2010).

Codes for generating RBF-FD stencils (Larsson, Lehto, Heryudono, Fornberg, in progress).

Version without any infinite expansions (Fornberg, Powell, Lehto, in progress).

Probably many more completely stable algorithms to come



The Contour-Padé algorithm:                                                                   
Numerically stable computations for  ε  near or equal to zero
Fornberg and Wright (2004)

Concept of algorithm:

Example: Evaluate       for  εεεε = 0  (or  εεεε  very small)f (�) = (1 − cos �) $ 1
�2

     'black box'

Difficulty: Numerical cancellation in forming
  .1 − cos �

Solution: Think of  f (εεεε) as an analytic 
function of a complex variable εεεε. 

Then  εεεε = 0  is just a removable 
singularity.

We can compute  f(0)  as the 
average value of  f  around a 
circle, centered at  the origin

in a complex  ε ε ε ε - plane.

ε
Point where we need
the function value

computationally ill-
conditioned region

Re

Im

safe path

ε

ε

computationally
ill-conditioned
region

point where we need

the function value



Contour integration - applied to the RBF case                                         

RBF interpolant s(x,ε) in complex  ε - plane:

Typical condition number for A-matrix: Possible computational path:

  

 

The interpolant s(x,ε) is a meromorphic function of a complex variable  ε. 

Although  A(εεεε) is highly singular for εεεε near zero, 

εεεε = 0  is almost always a removable singularity for  s(x, εεεε); else it is a low order pole.



The flat limit  ε = 0  corresponds simply to a removable singularity in a          
complex ε-plane for the for the RBF interpolant  s(x,ε).                                   

TASK: Given data fk at nodes  xk , k = 0,1,...,N, evaluate 

interpolant s(x,ε) for very small or zero values of  ε.

SOLUTION:  

Evaluate instead s(x,ε) around a larger circular path 
in the ε-plane. A complex FFT on the function values gives the 
coefficients of a Laurent expansion in a vicinity of the path:

s(x, �) =¢ + �−6c−6 + �−4c−4 + �−2c−2 + c0 + �2c2 + �4c4 + �6c6 +¢

Convert the part with negative powers by Padé’s method to 
rational form:

s(x, �) = {rational expression} + c0 + �2c2 + �4c4 + �6c6 +¢

We can now evaluate   for any value of  ε  inside the contour.s(x, �)

- Algorithm computationally stable up to a few hundred nodes in 2-D, several hundreds in 3-D
 
- Before this algorithm, it was wrongly believed that  computing with an RBF basis (especially near-flat RBF) was

intrinsically ill-conditioned ("uncertaincy principle" by Schaback). 

Obtaining the interpolant s(x) by means of  Aλ = f  followed by    is merely an unstable algorithm for as(x) = �k=0N �k�(||x − x
k
||)

stable problem.



Heuristic explanation of error curve for small εεεε                                  

Recall 1: Function  f (x,y) = 1

25+(x− 1
5 )2+2y2

Recall 2: s(x, �) = {rational expression} + c0 + �2c2 + �4c4 + �6c6 +¢

Observation: When ε is sufficiently small (inside all poles), then
  deviates from its  limit as s(x, �) � d 0 O(�2).

Describes the typical error curve shape for small ε.
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The concept for the RBF-QR method                                               

Recognize that the existence of an ill-conditioned basis does not imply that the spanned space is bad.

Ex. 1: 3-D space Ex. 2: Polynomials of degree ≤≤≤≤ 100

Bad Basis Good Basis

        xn , n = 0, 1,¢, 100 Tn(x) , n = 0, 1,¢, 100

Bad Basis       Good Basis

Ex. 3: Space spanned by RBFs in their flat  limit� d 0

- The spanned space turns out to be excellent
for computational work - just the basis that is
bad.

- Is there any Good Basis in exactly the same 
space?

- RBF-QR finds such a basis through some
analytical expansions, leading to numerical 
steps that all remain completely stable even
in the flat basis function limit.

    Bad Basis
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Background to RBF-QR for spheres: Spherical Harmonics (SPH)          

Spherical harmonics: Restriction to surface of unit sphere of simple polynomials in x, y, z: 

........................

1
4

15
2� (x2 − y2)− 1

2
15
2� z x

1
4

5
� (3z2 −1)− 1

2
15
2� z y1

2
15
2� x y2

− 1
2

3
2� x1

2
3
� z− 1

2
3
2� y1Y	


 (x,y,z)

1

2 � 1µµµµ = 0
...210-1-2...

νννν =

-  Counterpart to Fourier modes
    around periphery of unit circle

-  Orthogonal 

-  Uniform resolution over surface

-   Spectral accuracy for PDEs

but

-   Not associated with any
    particular node set

-   No counterpart to FFT

-   No opportunities for variable
     resolution



Expansions of RBFs in terms of SPH                                                     

RBFs, centered on the surface of the unit sphere, can be expanded in SPH as follows:

    � ( ||x − x
i
|| ) = �

	=0

∞

�

= −	

	 /

�2	c	,� Y	

 (x

i
) Y	


 (x)

where

MQ: �(r) = 1 + (� r)2 c	,� =
−2�(2�2+1+(	+ 12 ) 1+4�2 )

(	+ 32 )(	+ 12 )(	− 12 )
2

1+ 4�2+1

2	+1

IMQ:�(r) = 1

1 + (� r)2
c	,� = 4�

(	+ 12 )
2

1+ 4�2+1

2	+1

GA: �(r) = e− (� r)2 c	,� = 4�3/2

�2	+1 e−2�2 I	+ 12
(2�2)

Notes: - Σ /  denotes halving the term for v = 0.
- The singularity at ε = 0 in GA case is removable.

Key points of the RBF-QR algorithm:

- There is no loss of accuracy in computing   even if   .c	,� Y	

 (x

i
), � d 0

- The factors  will be analytically kept out of the numerical algorithm.  �2	



RBF-QR method on a sphere:                                                                  
Fornberg and Piret (2007)

The original ill-conditioned basis, and its expansion in terms of successive SPH functions:

 

 

 
 

 

 
 

� ( ||x − x
1
|| ) = c0,�Y0

0(x
1
)Y0

0(x) + �2c1,�Y1
−1(x

1
)Y1

−1(x) + �2c1,�Y1
0(x

1
)Y1
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1(x

1
)Y1

1(x) + �4{¢} + �6{¢} +¢
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0(x
2
)Y0

0(x) + �2c1,�Y1
−1(x
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£ = £ £ £ £

� ( ||x − x
n
|| ) = c0,�Y0

0(x
n
)Y0

0(x) + �2c1,�Y1
−1(x

1
)Y1

−1(x) + �2c1,�Y1
0(x

1
)Y1

0(x) + �2c1,�Y1
1(x

1
)Y1

1(x) + �4{¢} + �6{¢} +¢

In matrix x vector form:

     ...
O(1) O(�2) O(�4)

                   

Factorize the matrix as  Q · E · R

     Q

1

�2

�2

�2

�4

•

* $ $ $ $ $ $ $ $ $ £

* * * $ $ $ $ $ $ £

* * $ $ $ $ $ $ £

* $ $ $ $ $ $ £

* * * * * $ £

• £ £ £ £ £

  
well conditioned basis, spanning the same space

New basis is computed entirely without numerical cancellations (even if  ε  is very small), and it spanns
exactly the same space as the original base - hence it gives the same interpolants, etc.

Critical "Counting" - issue: The number of eigenvalues of sizes O(ε0),O(ε2),O(ε4), ... exactly matched the
number of terms of matching powers in the RBF expansion (viz. 1,3,5,7,...) - else the method's rate of
improvement would have fallen short of the problem's rate of worsening. 
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Interpolation on a sphere - RBF-Direct vs. RBF-QR                       

Test function:       1849 minimal energy nodes     Errors as function of εεεε

f(x) = e
−7(x+ 12 )2−8(y+ 12 )2−9(z− 1

2
)2

RBF-Direct:  with the  from solving  ;  Cond(A) = O(ε -84). s(x) = �
k=1

N

�k �(|| x − x
k
||) �k A� = f

Lowering  ε  by a factor of 100 increases cond(A) a factor of  100 

84 = 10 

168. Maintaining

>10 digits of accuracy by means of extended precision arithmetic requires the numerical
precision to be raised from standard 16 digits to around 180 digits. 
Extended precision generally not a cost effective approach.

RBF-QR: 

With the new basis functions in exactly the same approximation space, cond(A') remains

O(1). Cost increase over RBF-Direct about 6 times, no matter how small ε is used.



RBF-QR in 1-D, 2-D and 3-D                                                                   
Fornberg, Larsson, Flyer (2011)

Concept:  Same as on the sphere (but so far limited to GA and BE RBFs); illustrated here in 2-D:
In the case of GA RBFs:

�(||x − x
i
||) = e−�2((x−xi)2+(y−yi)2) = e−�2(xi 2+yi 2) $ e−�2(x2+y2) $ e2�

2(xxi+yyi)

The first factor is an irrelevant scalar multiplier; We Taylor expand the last factor

e2�
2(xxi+yyi) = 1 + 2�2(xx i + yy i) + 2

2�4

2!
(xx i + yy i)2 + 2

3�6

3!
(xx i + yy i)3 +¢

which leads to the new basis functions

(1)e−�2(x2+y2) $ {1}, {x, y}, {x2, xy, y2}, {x3, x2y, xy2, y3},¢

Counting correct:  The groups contain {1,2,3,4,...} entries; matches the eigenvalue pattern for A-matrix.

In d-D, the same procedure gives always perfect 'counting' agreement.d m 1,

Additional technicalities:  RBF-QR based on the new basis does not degrade as , but the basis� d 0
functions are reminiscent of increasing degree monomials. Problems associated with that can be
bypassed by two further steps:

- Transform to polar coordinates: Replace (1) by

e−�2r2 $ {1}, r{cos�, sin�}, r2{1, cos 2�, sin 2�}, r3{cos�, sin�, cos 3�, sin 3�},¢

- In 3-D, use Chebyshev radially and SPH angularly rather than Chebyshev and trig functions
- Replace powers of r by Chebyshev polynomials radially.

Summary:
- About 6-10 times the cost for RBF-Direct.

- Numerically stable all the way into the  limit.� d 0
- Can use N - values in the thousands, in 1-D, 2-D, 3-D.



One idea for reduction of RP caused by edge effects                              
Fornberg, Driscoll, Wright, Charles (2002)  TPS    MQ

Applied to constant
data, RBF interpo-
lants do NOT become 
constant functions:

cubic

Cubic RBF is a case of cubic splines - with the totally weird extra boundary conditions

 

 
 
s ∏∏( 1) = 2s ∏(1) − s ∏(−1) − 3

2 (s(1) + s(−1))
s ∏∏(−1) = s ∏(1) − 2s ∏(−1) − 3

2 (s(1) + s(−1))

For standard cubic splines, two much better boundary treatments are routinely used:

1. Natural spline:  at  s ∏∏(x) = 0 x = !1

2. Not-a-Knot: Disallow jump in third derivative one node in from each edge

Both approaches carry immediately over, first to cubic RBFs in 1-D, and then to any RBFs in d-D:



RBF equivalents for two BC options: Scattered points in 1-D                

1. Natural spline:

Instead of   use  s(x) = �
k=1

n

�k �(|x − xk|),
 

 
 
 
 
s(x) = a + bx + �

k=1

n

�k �(|x − xk|)

with constraints � �k = 0, � �kxk = 0
.

Proof: For ,  and . Similarly,  alsox m xn s(x) = �
k=1

n

�k (x − xk)3 s ∏∏(x) = d2

dx2 �
k=1

n

�k (x − xk)3 = 6x�
k=1

n

�k − 6x�
k=1

n

�kxk = 0 s ∏∏(x) = 0

for .x [ x1

2. Not-a-Knot:

Separate interpolation points from RBF (basis) centers 

Carry it out one step further - we get  'super-not-a-knot ' 

Both ideas carry over to any RBF-type over any multi-D domain:

interpolation points

basis centers

interpolation points

basis centers

1
basis centers

interpolation points

1
basis centers

interpolation points



... and for scattered points in 2-D                                                          

Test function:  f (x, y) = 1

25 + (x − 1
5 )2 + 2 y2

Different edge treatments:

Standard Clustered Not-a-knot Super-Not-a-knot

Errors  0  to  10-6

Standard Clustered Not-a-knot Super-Not-a-knot

ClusteredClustered SNaKSNaK



RBFs,  the Runge Phenomenon,  and  spatially variable ε                   
Fornberg and Zuev (2007)

Runge phenomenon (RP) for polynomials:

For equispaced polynomial interpolation on [-1,1]:

Error: with   E(z,n) l e n (�(z0)−�(z)) �(z) = − 1
2 Re[(1 − z) ln(1 − z) − (−1 − z) ln(−1 − z)]

- Function f(x) enters only through z0 - location of nearest singularity

- Typically 'controlled' by Chebyshev-type node refinement at edges (more options available with RBFs).



The Runge Phenomenon                                                                       

Runge phenomenon (RP) for RBFs Two main causes:

- Edge effect, as ε → 0

RBF interpolant then becomes
increasingly 'polynomial-like'

Figures show GA interpolation
of  

f(x) = 1
1+16x2

- Result of local mesh refinement

MQ RBF interpolation
of   f (x) = arctan(20x)



Reversal of error trend as  ε → 0 is due to the RP                                 

- Rightmost column shows same test case as the top one on the previous slide

- Error degradation for small ε is less severe whenever the polynomial RP is smaller
- Error increase as ε → 0  is due to RP.   Key goal:   Reduce or eliminate the RP!  



Opportunities with variable xi , εi RBF interpolation                               

10-point MQ variable xi , εi interpolation Chebyshev interpolation needs 170 points for
matching accuracy

Result above obtained by numerical optimization
(genetic algorithm). 

Too expensive for routine use, but
illustrates great potential, if one can find much faster

strategies for finding good  xi and εi .



Polynomial Reproduction                                                                           

Exact 'reproduction' of low order polynomials over unbounded node sets for certain RBF types;
first shown on lattices, then for arbitrary infinite node distributions (Buhmann, Powell), later for BE (Flyer)

   none   [many formulas]   Compact RBFs (Wendland, etc.)

   none   e−(�r)2   GA

   d - 3   1/(1 + (�r)2)   IQ

   d - 2   1/ 1 + (�r)2   IMQ

   d   1 + (�r)2   MQ

   d   r   linear

   d + 1   r2 log r   TPS

   d + 2   r3   cubic

   all   Jk/2−1/(�r)k/2−1   BE

Reproduced degree in d-DRadial function �(r)Type of basis function

Not hard to spot: BE exceptional (as in many other situations; result not true in BE  GA limit).d

The degree for polynomial that can be reproduced is an immediate reflection of the rate

of growth for  as  .�(r) |r| d ∞



Applications of Polynomial Reproduction                                           

Analysis of RBF convergence rates on infinite lattices:  

This often gives misleading results... Approach is based on low degree polynomials, and might not reflect
spectral convergence properties that are typical of RBF approximations over bounded regions.

Stationary / Saturation errors:

With most numerical methods, increased node density translates to increased accuracy. 

When using RBF-Direct, cond(A) will increase, suggesting using  (with  constant; h some typical� = 
/h 

node separation). Errors will than often 'saturate' when  (approach constant for GA, decrease as h d 0

 for MQ).  In  limit, the issue is reduced to the reproduction of a constant. O(h2) h d 0

Example: Consider a h-spaced 2-D lattice, and the Wendland RBF  with �3,1(r) = (1 − �r)+
4(4�r + 1) � = 1

3h
.

Since the RBF is compact, it cannot reproduce a constant. Illustration shows  over  in the s(x) [0,h] % [0,h]
 limit; center value 0.9912, i.e. about 1% error.h d 0

Possible remedies against saturation errors:

1. Don't increase  at the high rate .� � = 
/h
Use a stable algorithm if needed; good 
chance for spectral convergence (if smooth RBF).

2. Choose some RBF implementation that
reproduces as high order polynomials as
is practical; provides algebraic convergence. 



Analysis of RBFs on lattices                                                                 

WARNING: The approach frequently produces results that have little or no relevance to RBFs on

irregularly spaced nodes or over finite domains.

Example: The only error estimate that is quoted in the Scholarpedia article on RBFs is that   
MQ is accurate to O(h d+1) on an infinite lattice with spacing h in d-D.

Notations and some general formulas:

Use convention: 1-D: ,   u(x) = 1

2	
¶−∞
∞
u(�) ei�xd� u(x) = 1

2	
¶−∞
∞
u(x) e−i�xdx

In d-D, let: ,   r = x1
2 + x22 +¢ + xd2 � = �1

2 + �22 +¢ + �d2

Hankel Transform:

�(�) = 1

(2	)d/2 ¶−∞
∞
¢ ¶−∞

∞
�(||x||) e−i �$x

dx

= 1

�(d−2)/2 ¶0
∞
�(r) rd/2 J(d−2)/2(r�)dr

If   odd:d = 2m + 1 �(�) = (−2)m 2
	

dm

d(�2)m ¶0
∞
�(r) cos(r�)dr

If   even:d = 2m + 2 �(�) = (−2)m dm

d(�2)m ¶0
∞
�(r) r J0(r�) dr

Generalized Fourier Transform:

Example: Immediate calculation of the FT of   fails due to divergence. However, �(r) = |r|3

 .�(r) = lim

d0

1

2	
¶−∞
∞
|r|3e−
 |r| e−i�rdr = lim


d0

1
2	

12(�4−6�2
2+
4)
(�2+
2)2 = 1

2	
12

�4



Fourier transforms of some common RBFs                                         



Concept of 'locality'                                                                                                     
Fornberg, Flyer, Hovde, Piret (2008)

EXAMPLES OF CARDINAL

DATA (over [-1,1])

x      x x

_______________________________________________________________________________

EXPANSION COEFFICIENTS

RBF Expansion   coefficients   for   the   three   cardinal   data   cases   above

IQ       (ε = 10)1/(1 + (� r )2

MQ      (ε = 10)1+ (� r )2

CUBIC    | r | 3
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0
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Locality of cardinal coefficients on  infinite 1-D lattice                                         

For cardinal data, needs to hold: LHS discrete convolution: Then:

Let �
k=−∞

∞

�k �(n − k) =
 
 
 
1 n = 0
0 n ! 0

 

 

 
 

 

�(�) = �
k=−∞

∞

�k e i k�

�(�) = �
k=−∞

∞

�(k)e i k�
�(�) $ �(�) = 1

Both 2ππππ - periodic functions

The fomulas above provide a way to compute  λK:   

⇒ ⇒ ⇒�(r) �(�) �(�) = 1 /�(�) �k = 1
2	
¶
0

2	

�(�) e− i k� d�

__________________ __________________

First step may diverge; if so, use generalized Task becomes to carry out

Fourier transform and Poisson's summation asymptotic analysis on this

formula: integral, for k increasing

Standard task by contour integration�(r) e �(�) e �(�) = 2	 �
k=−∞

∞

�(� + 2	k)



Examples of steps in finding  λk                                                                                                                                        

Cubic RBF:

⇒ ⇒ ⇒ ⇒    �(r) = r
3

�(�) = 12

2	

1
�4

�(�) = 2 + cos�
4 sin4

�

2

�(�) =
4 sin4

�

2

2 + cos� �k =

 

 

 
 

 

 
 

−4 + 3 3 k = 0
19
2 − 6 3 k = 1
(−1)k3 3

(2 + 3 )k
k m 2

Closed form expressions are available also in some more RBF cases:

GA: ⇒  ,�(r) = e −(� r )2 �k = e (�k)2

2

� j=k
∞

(−1) j e− �2(j+ 1
2

)2

� j=0
∞

(−1) j (j+ 1
2 )e− �2(j+ 1

2
)2

k c Z.

SH: ⇒ ,�(r) = sech (� r ) �k = 1

� j=0
∞

(−1) j sech2(� j )
(−1)k sech (�k ) k c Z.

Much more generally applicable approach: 

Find the analytic expression for  , and  then estimate   �(�) �k = 1
2	
¶
0

2	

�(�) e− i k� d�



Analysis in the case of MQ (ε = 1)                                                                               

     where�k = 1
2	
¶
0

2	

�(�) e i k� d�

�(�) = − 1
2

 

 
 
 
 

1

� j=0
∞ K1(2	j+�)

2	j+� − � j=1∞
K1(2	j−�)
2	j−�

 

 
 
 
 

Extend to complex plane in strip      0 [ Re� [ 2	
Magnitude shown ⇒

Change contour:

⇒ �k l 17.433 (−1)k e−1.0566k +¢ − 3
k5

+¢

exponential part algebraic part

(from first pole) (from branch points)

Comparison between correct values for  | λλλλk | (dots)
and the asymptotic formula (solid curve):

Initial exponential decay:

- present for all RBFs

Ultimate algebraic decay:

- present for TPS, MQ, IQ, ...
- absent for GA, SH, cubic, ...



Close connection between  λλλλk and the cardinal interpolant s(x)                               

Example: IQ: �(r) = 1
1+(� r)2

 

 

 
 

 

 
 

�k = (−1)k� sinh 	�
	2 ¶

0

	
cos k�

cosh
�
�

d�

s(x) = 2 sinh
	
� sin	x

	x (cosh 2	
� −cos2	x)

¶
0

	
cosx�

cosh
�
�

2 d�

Choose ε = 1

Expansion coefficients Cardinal  interpolant

  k       λk
---------------------
  0  1.736969
  1 -0.783036
  2  0.138379
  3 -0.043102
  4  0.000939
  5 -0.005300
  6 -0.002424
  7 -0.002075
  8 -0.001535 [ 0, 4 ] [ 4,10]
  9 -0.001230
10 -0.000996
11 -0.000825 - Conceptual similarity follows from general integral formulations:
... ...

 .�k = 1
(2	)3/2 ¶

0

2	
e i k�

�
j=−∞

∞

�(�+2	 j)
d�, s(x) = 1

2	 ¶
−∞

∞
� (�)e i x�

�
j=−∞

∞

�(�+2	 j)
d�

- Both formulas above generalize immediately to lattices in n -D.
- By adding translates, get full description of Gibbs' phenomenon for RBFs.



Generalize to 2-D                                                                                                         

CUBIC RBF

For other RBFs, get different coefficient patterns: Dashed curve − ( 52	 )
2 1
|k |7
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RBF and the Gibbs Phenomenon                                                           
Fornberg and Flyer (2011)

Some examples of the Gibbs phenomenon (GP):

1
2

+ 1	 ¶
0

	
sin t
t dt l 1.0895

max
0<�<1

sin 	x
	 �

k=0

∞ (−1)k
� − k l 1.1411

1
6

(8 − 2 2 − 3 − 6 ) l 1.1078



Some closed-form expressions                                                              

With radial function  : Fourier transform�(r) �(�) = ¶
−∞

∞

�(x)e− i�x dx

Poisson sum�(�) = �
k= −∞

∞

�(k)e i k� = �
j= −∞

∞

�(� + 2	j)

the RBF interpolant to step data    ...   1   1   1   1   1   0   0   0   0   ...   becomes

sG(x) = �
j=0

∞
1
2	
¶

−∞

∞
�(�)
�(�) cos((x + j)�)d� = 1

2
− 1
4	
¶

−∞

∞
�(�)
�(�)

sin((x − 1
2 )�)

sin
�

2

d�

The interpolant can be evaluated numerically, or be estimated asymptotically by contour integration



Illustrations of the Gibbs phenomenon for RBF interpolants                     

- Oscillations becoming one-sided with algebraic decay, or featuring exponential decay, dependent on

whether    has a branch point or not at �(�) � = 0.

- If there is a transition for an infinitely smooth  - case, it moves out to infinity when  �(r) � d ∞.



PS vs. RBF derivative approximations                                               
Fornberg, Flyer, Russell (2008)

There is something strange about how FD Where should    pick up its data from?
Ø
Øx

and PS methods approximate  Answer:    1

2

Ø
Øx

+ Ø
Øy

x
8 0F1(3,− 1

4 (x2 + y2))

Turns out: RBFs on hexagonal or Halton (scattered) node types can be better conditioned
and give higher accuracy than PS or RBFs on Cartesian lattices.

→
x

↑ y



Where do RBF approximations pick up derivative information from?

Cartesian grid:    MQ, ε = 1. Hexagonal grid:  Nontrivial stencil shapes
         also in the limit of ε→ 0

Ø
Øx

In the limit of ε→ 0 Ø
Øy



Comparison between grid types                                                          

Four different types of node layouts: Interpolation errors for the test function  

f(x,y) = 1/ (1 + (sin 	−x2 )
6 + (sin 	−y2 )

6 )4

The test example (N=169 or 196) is too small for seeing any trends as node densities increase



Comparison using increasing
values for N.

Four different types of node 
layouts; Gaussian RBFs:

CONCLUSION: Even in periodic settings, equispaced grids are NOT optimal in 2-D (or above)

Halton nodes: Typically not optimal, but often better than Cartesian lattices, and easy to generate in d-D: 

function H = halton(numpts,ndims)
% This routine creates the identical sequences as t he routine
% haltonseq that is available from matlab Central
%   numpts  (scalar) number of points to generate i n Halton sequence
%   ndims   (scalar) number of dimensions, should b e <=6
if ndims > 6; error('ndims > 6'); end
p = [2 3 5 7 11 13];
H = zeros(numpts,ndims);
for k = 1:ndims
    N = p(k); v1 = 0; v2 = 0:N-1; lv1 = 1;
    while lv1 <= numpts
        v2 = v2(1:max(2,min(N,ceil((numpts+1)/lv1)) ))/N;
        [x1,x2] = meshgrid(v2,v1);
        v1 = x1+x2; v1 = v1(:); lv1 = length(v1);
    end
    H(:,k) = v1(2:numpts+1);
end



Global RBFs for solving PDEs

Presented at NSF-CBMS Regional Research Conference
University of Massachusetts, Dartmouth, by

Bengt Fornberg and Natasha Flyer 



Original proposal for using RBFs to solve PDEs                                      

Two pioneering papers by Kansa (1990)

Multiquadrics - A scattered data approximation scheme with applications to computational fluid dynamics -

I. Surface approximations and partial derivative estimates
II. Solutions to parabolic, hyperbolic and elliptic partial differential equations

Demonstration examples included:

- 1-D von Neumann blast wave
- 2-D Poisson equation 

Connection RBF-PS emerged around 2002-2003 (Driscoll, Fornberg, Fasshauer)

Theoretical connection via the theorem that the flat RBF-limit is of polynomial form



Solving Poisson's equation based on Kansa's formulation                      

Direct collocation (Method by Kansa):       u = g(x,y)

On Boundary: u = g(x,y)

In interior: Lu h
Ø2u
Øx2

+ Ø
2u
Øy2

= f(x,y)

L u = f(x,y)

Let      yu(x) = �
j=1

n

� j �(||x − x
j
||)

Collocation gives:

       x

� ( ||x − x
j
|| )|x=x i

− − − − − − − −

L� ( ||x − x
j
|| )|x=x i

� j =

g

−

f

Key features:

- Spectral accuracy   (if smooth RBFs)
- Completely arbitrary geometry 
- Code maybe 15 lines...   (in Matlab, if using a direct solver)



Numerical tests for Poisson's equation                                                  
(Larsson and Fornberg, 2003)

   

 

 
 
 
 

Ø2u
Øx2

+ Ø
2u
Øy2

= f (x,y) in interior,

u = g(x,y) on boundary

The RHS functions are chosen so

that u(x,y) = 100
100 + (x − 0.2)2 + 2y2

Direct  RBF collocation       Pseudospectral (PS) Finite differences (FD2)

Test with different        Fourier angularly Centered FD2 in both

φ(r) and ε       Chebyshev radially directions

In all cases   48  nodes  in the interior, 16  nodes on the boundary



Comparison between RBF, PS, and FD2 approximations                       

RBF approximations: Gaussians (GA) �(r) = e− (� r)2

Inverse quadratics ( IQ) �(r) = 1/(1 + (� r)2 )
Multiquadrics (MQ) �(r) = 1 + (� r)2

Errors (max norm) vs. εεεε:

Using direct computation Using the Contour-Padé algorithm

For FD2 in 2-D: Error is inversely proportional to number of points  ⇒  
RBF with 64 points similar accuracy to FD2 with 64 ⋅ 10 6  points



Several important topics that we will NOT cover in any detail:         

Domain Decomposition:

- Defeat O(N 3) operation count (or O(N 2) per step when time stepping using pre-computed DMs)
- Implementation issues as with other methods (domain overlaps vs. edge-to-edge coupling)
- Concerns include RP at many artificially introduced interior boundaries 

Partition of Unity:

- Carry out RBF interpolation separately over the different partition functions' support areas
- When 'weighing together' the separate interpolants, RP becomes very effectively suppressed.
- Approach originated in mid-1990s, but still relatively (surprisingly) little used in RBF contexts. 

Fast algorithms:

Most algorithms focusing on fast evaluations of sums , as these arise both in evaluatings(x) = � � i(||x − x
i
||)

RBF interpolants and in iterative algorithms for finding RBF expansion coefficients. Approaches include
 

- Multipole methods
- Krylov iteration-based algorithms
- Fast Gauss transforms

The implementations are often complex, and their effectiveness tend to decrease with lowered ε. 
RBF-FD (and maybe Partition of Unity) approaches are likely to reduce or eliminate the need for 'Fast'
algorithms. 

Error estimates:

Generally, not essential for the effective practical use of RBF-type methods.



Greedy algorithms:

Based on interpolation residuals, recursively add nodes or exchange active nodes within some large node
set. Often results in provable (but slow) convergence. 

Other forms of dynamic node refinement:

Residual subsampling; e.g. for the 2-D Burger's eq. (Heryudono, Driscoll)

Refinement strategies can be 'borrowed' for ex. from the FEM literature.

In 2-D and ignoring boundary effects, hexagonal node sets often seem to work well. Such sets can for ex.
be realized via electrostatic repulsion-type algorithms. If the character of the function suggests the need for
local refinement, the electrostatic constant can be varied accordingly (Flyer and Lehto, 2010)

Automated strategies for choosing a (single) optimized shape parameter εεεε:
'Optimal' values often depend on whether an ill-conditioned (RBF-Direct) or a stable algorithm is used.
Several heuristic formulas have been suggested based only on node densities. 

- LOOCV ('Leave One Out Cross Validation') (Rippa, 1999)  
Repeatedly chaging the left-out node permits some cost savings (but still computationally expensive)

Next:   Five slides from the presentation

A RBF Method for solving Parabolic Differential Equations on Surfaces

Grady B. Wright and Edward J. Fuselier

Presented at Int. Symp. Approx. Theory, Vanderbilt Univ. May 17-21, 2011



Int. Symp. Approx. Theory
May 17-21, 2011

Current methods and the present approach
● Current numerical techniques can be split into 2 categories:

1. Surface-based methods:  approximate the PDE on the surface using intrinsic coordinates.

2. Embedded methods: approximate the PDE in the embedding space, restrict solution to the surface.

● Present kernel method:

Logically rectangular grid
Calhoun and Helzel (2009)

Triangulated Mesh
Dziuk (1988)
Stam (2003)
Xu (2004)
Dziuk & Elliot (2007)

Level Set
Bertalmio et al. (2001)
Schwartz et al. (2005)
Greer (2006)
Sbalzarini et al. (2006)
Dziuk & Elliot (2010)

Closest point:
Ruuth & Merriman (2008)
MacDonald & Ruuth (2008)
MacDonald & Ruuth (2009)

● Similarity to 1: approximate the PDE on the surface.
● Similarity to 2: use extrinsic coordinates.
● Differences: method is mesh-free; computations done in same dimension as manifold.
● Similarities to kernel methods for the unit sphere:

Gia (2005); Flyer and Wright (2007, 2009); Wright et al. (2010); Flyer & Lehto (2010)

● Restriction:  works for embedded submanifolds (defined implicitly or parametrically).



Int. Symp. Approx. Theory
May 17-21, 2011

Example: Turing patterns

● These types of systems studied extensively in planar domains.

● Pattern formation via non-linear reaction-diffusion systems; Turing (1952)

Possible mechanism for animal coat formation (and other morphogenesis phenomena)   

● Example system: Barrio et al. (1999)

● More recent studies have focused on the sphere.

● Growing interest on more general surfaces.

Initial condition:
u and v random values between +/- 0.5



Int. Symp. Approx. Theory
May 17-21, 2011

Example: Turing patterns
● Example of steady spot patterns computed with our kernel method:



Int. Symp. Approx. Theory
May 17-21, 2011

Example: Turing patterns
● Example of steady stripe patterns computed with our kernel method:



Int. Symp. Approx. Theory
May 17-21, 2011

Example: spiral waves in excitable media
● Example system: Barkley (1991)

● Studied extensively on planar regions.

● Interest in these systems on surfaces since they are more physically relevant.

u = activator species
v = inhibitor species

Simplification of FitzHugh-Nagumo model 
for a spiking neuron.

● Some studies already devoted to the case of spiral waves on the sphere.

● Example of spiral waves computed with our kernel method:

Simulation

http://math.boisestate.edu/~wright/research/BarkleyModelOnBretzel2.mov


RBF-Generated FD (Finite Difference) Methods

Presented at NSF-CBMS Regional Research Conference
University of Massachusetts, Dartmouth, by

Bengt Fornberg and Natasha Flyer 



RBF-FD origin and concept:                                                                

2000 Presented by Tolstykh at the 16th IMACS Conference, Lausanne.
2002 Noted in Driscoll & Fornberg, as a natural development based on the flat RBF limit theorem.
2003 Papers by Tolstykh & Shiribokov, by Shu, Ding & Yeo, and in Wright (Ph.D. thesis).

Concept: Illustrated below in the case of the Laplacian operator in 2-D

Explicit: Compact (Implicit):

Regular FD:     (2nd order)    (4th order)

1

1 −4 1
1

u
h2

= �u
1 4 1

4 −20 4
1 4 1

u
6h2

=
1

1 8 1

1

�u
12

RBF-FD:

- On scattered node sets, all RBF-FD stencils different (i.e. we can't use one single stencil everywhere).
- One obtains weights by making the result exact for   centered at the u - nodes, as well as for�(æx − xkæ)

  centered at   - nodes.      (Slight modification: Use   with constraint  ).��(æx − xkæ) �u s(x) =� �k�(æx − xkæ) + � � �k = 0

- When RBF-FD approach is applied on lattice-based node sets,  often reduces to regular FD case� d 0
- One can compute weights stably for all values of ε (e.g. with the Contour-Padé or RBF-QR algorithms)
- Diagonal dominance  ( )  may be possible also for relatively large stencils - advantageous|c1| m �

k=2

n

|ck|

both for stability and for iterative solution methods.



Application concepts:                                                                           

Two different concepts with boundaries: Use FD at boundaries and RBF-FD inside - or other way round...

Shu, Ding & Yeo (2003) Fornberg, Driscoll, Wright, Charles (2002)

In domain interiors (e.g. on the surface of a sphere), one should be able to use strips with RBF-FD to 'patch
together' areas that are based on FD lattices 



Example 1: Poisson's equation in unit circle                                          
Wright and Fornberg (2006)

Test problem:    in unit circle; Dirichlet problem with solution  �u = f u(x,y) = 25
25 + (x − 0.2)2 + 2y2 .

Discretizations:

200 points unstructured 201 points structured

Max norm errors: Some comparisons in the literature for this
test problem:

Global RBF N = 50 4.6 $ 10−9

PS (Fourier-Chebyshev) N = 50 3.2 $ 10−6

RBF-FD  (implicit, n = 10)  N = 200 5 $ 10−8



Example 2                                                                                            

PDE:    in square outside central circle; Dirichlet problem with solution  .�u = e−2x u3 u(x,y) = ex tanh y

2

Hybrid discretization: Max norm errors:

252 scattered
nodes, 
use (10/10 stencils)

 
482 regular 
nodes
use (9/5 stencils)

Implementation concept here: Use scattered nodes only where the geometry is complex.



Optimal ε for fixed stencil size, increasing N                                            
Davydov and Onah (2011)

RBF-FD for Poisson's equation on various domains and different RHSs

......... .........

Typical results of errors vs.  ε
when increasing N 

       ......  ........  e
Dots mark lower reach of
RBF-Direct; below these
RBF-QR was used.

Some observations (based on small small stencil sizes only):

- Structure of the error curves may or may not have a distinctive dip

- The curve forms depend on the PDE's RHS, but hardly at all on domain type

- Increasing N essentially only shifts the curved downwards

- Use of a stable algorithm is essential for reaching good accuracies
(possibly more so than in the case of global RBFs) 



Illustrations from two RBF-FD implementations in fluid dynamics           

Shan, Shu, Lu (2008):   Full 3-D simulation of steady flows past a sphere. 

Time dependent velocity component formulation integrated until steady state
state has been reached. Steady solutions without axial symmetry are possible 

for Re  211.á
At left: Grid point
distribution in the x,y-
plane at z = 0.

At right: Example of a

computed solution at
Re = 250.

  

Chinchapatnam, Djidjeli, Nair, Tan (2009):   2-D driven cavity.  Tests "Randomly" vs. "Uniformly" distributed nodes.



RBF-FD approximations for purely convective PDEs                              
Fornberg and Lehto (2011)

Complication: For PDEs with no natural damping, the DM e-values should be right on the imaginary

axis. With RBF-FD approximations, eigenvalues corresponding to spurious (highly
oscillatory) modes will be scattered off the axis, including into the RHP (right half
plane), causing growth during time integration.

Illustration: Pure convection in an arbitrary direction around a sphere

     N = 1849 MD nodes    Global RBF: N = 900, ε = 0,    N = 900, ε = 5, RBF-FD: N = 3600,

    n = 17, ε = 2.5

'Hidden' among the RBF-FD e-values are those with smooth e-functions, accurately represented and
virtually right on the imaginary axis.

Task: Create 'filter' strategies, which leave accurate modes unchanged, but shifts spurious modes over

to the LHP (left half plane).



Design of a local RBF-FD hyperviscosity filter                                         

As background, recall the 'effect' in Fourier space of different order accurate FD approximations for :d/dx

Factors when approximating  Convective operator: Same curves as to the left; expressed
d
dx e

i� x = i� e i� x
by centered FD formulas of increasing orders in terms of stencil width n.

Filter: Damping achieved by approximating

  to lowest (second) order
dn−1

dxn−1

Using the same stencil size for the convective operator and the filter allows the modes that are convected
accurately to be left essentially intact, while all the higher modes can be effectively damped out.

The filter is described as a hyperviscosity filter, due to its similarity with the same concept in
numerical turbulence simulations. 



Implementation of the RBF hyperviscosity filter in d-D                             

- Recall the relations used for calculating RBF-FD weights for an operator L:

   or  A
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- When going from 1-D to d-D, replace high even order derivatives    by powers  of the Laplacian
d2k

dx2k
�k
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2

- With    and , the required weights for the RBF-FD filter follow from the relation  L = �k �(r) = e−(� r)2

 L�(r) = �k�(r) = �2kpd,k(r)�(r)
where denotes (explicitly known, and thus easily calculated) generalized Laguerre polynomials.  pd,k(r)

- For the surface of a sphere (and likewise for other surfaces embedded in 3-D), each RBF-FD stencil is
nearly flat, and thus one can use d = 2.

- For each RBF-FD stencil for the convective operator, we create a matching hyperviscosity RBF-FD
stencil, and then apply the two together.

This type of hyperviscosity filter is used in all the following convective flow RBF-FD calculations. 

Use of hyperviscosity allows the use of much larger/more accurate RBF-FD stencils than otherwise

 



In case of Global RBFs:   The A-1- filter is both simple and highly effective       
Focus for now on GA RBFs; spherical geometry:

The DM:  Smooth e-functions should be left intact; highly oscillatory (or generally jagged ones) should be damped.

The A-matrix:  Positive definite, and has e-values: 1 O(ε0), 3 O(ε2), 5 O(ε4), 7 O(ε6), 9 O(ε8), ...

          e-functions: very smooth               --->                       increasingly oscillatory

The A-1 matrix: This matrix is also positive definite, and it has exactly the same e-vectors (e-functions) as A. 

  The  A-1-matrix has e-values: 1 O(ε0), 3 O(ε -2), 5 O(ε -4), 7 O(ε -6), 9 O(ε -8), ...

This suggests: Instead of time stepping with the global RBF DM based on the convective PDE operator:

,    use instead    
d
dt

u = DM u d
dt

u =
 

 
 
 
 

DM − � A

−1  

 
 
 
 
u

Typical illustrations: Here shown
in case of the vortex roll-up test case:

Left: No filter

Right: With the A-1-filter

Note: No problem with e-values
moving far out to the left; 
explicit time stepping still 
works just fine.
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