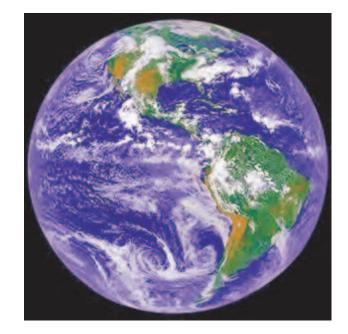
Radial Basis Functions for Computational Geoscience



Natasha Flyer and Bengt Fornberg

Modeling Motivations for RBF Computational Research

Examples:

- Easy model coupling
- Necessary scalability
- Free-boundary problems
- Geometric flexibility
- Algorithmic simplicity
- Long term time stability
- Resolvable temporal and spatial scales that validate the physics

Bottom Line

High-resolution and numerical accuracy at low computational costs to resolve the multi-scale features of physical flows

Highlights of Some High-Order Methods in Large-Scale Models

Double Fourier series:

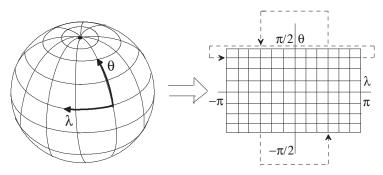
- Strength: Exponential accuracy Computationally fast because of FFTs
- Weakness: No practical option for local mesh refinement

Spherical harmonics:

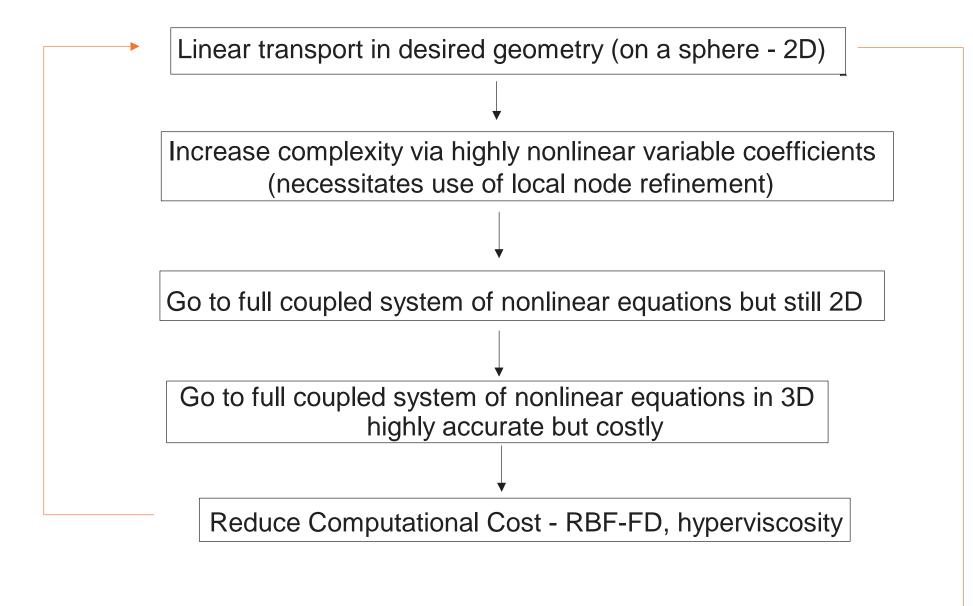
- Strength: Exponential accuracy
- Weakness: No practical option for local mesh refinement Relatively high computational cost Poor scalability on parallel computer architectures

Spectral elements:

- Strength: Accuracy approaching exponential Local refinement is feasible but complex
- Weakness: Loss of efficiency due to unphysical element boundaries (Runge phenomenon - oscillations near boundaries → restrictive time-step) High algorithmic complexity High pre-processing cost



Flowchart for Developing Large-Scale RBF Convective Models

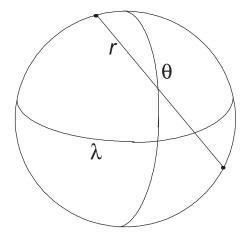


Complex unstable flow simulations that are cheap and competitive

RBFs: The Gradient Operator

(Flyer and Wright, JCP, 2007)

$$\nabla = \frac{1}{\cos\theta} \frac{\partial}{\partial\lambda} \hat{\lambda} + \frac{\partial}{\partial\theta} \hat{\theta}$$



Singular at the poles $\theta = \pm \frac{\pi}{2}$ unless $\frac{\partial}{\partial \lambda}$ also vanishes

$$r = ||\underline{x} - \underline{x}_{i}|| = \sqrt{2} \sqrt{1 - \cos\theta \cos\theta_{i} \cos(\lambda - \lambda_{i}) - \sin\theta \sin\theta_{i}}$$

$$\frac{\partial}{\partial \lambda}\phi = \frac{\sqrt{2}\cos\theta\cos\theta_j\sin(\lambda-\lambda_j)}{r}\frac{\partial\phi}{\partial r}$$
$$\frac{\partial}{\partial \theta}\phi = \sqrt{2}\frac{\sin\theta\cos\theta_j\cos(\lambda-\lambda_j)-\cos\theta\sin\theta_j}{r}\frac{\partial\phi}{\partial r}$$

$$\nabla \phi = \left[\cos \theta_j \sin(\lambda - \lambda_j)\hat{\lambda} + \left[\sin \theta \cos \theta_j \cos(\lambda - \lambda_j) - \cos \theta \sin \theta_j\right]\hat{\theta}\right] \frac{\sqrt{2}}{r} \frac{\partial \phi}{\partial r}$$

Notice that <u>nowhere</u> is the gradient operator singular ! No pole singularities even though spherical coordinates are used!

Solid Body Rotation of C¹ Cosine Bell

(Flyer and Wright, JCP, 2007)

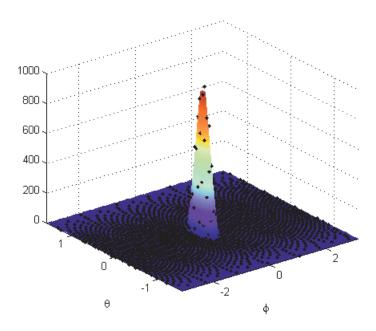
Method of lines formulation

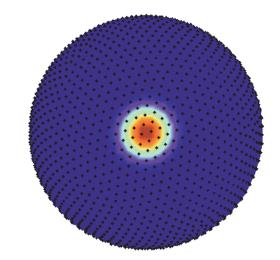
$$\frac{\partial h}{\partial t} = -\left(\underline{U} \bullet \nabla\right)h \quad \iff \quad \frac{\partial h}{\partial t} = -D_N h$$

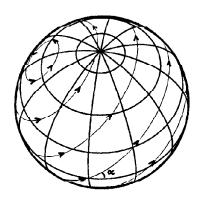
 D_N is discrete RBF differentiation matrix:

- Free of Pole Singularities (although posed in spherical coordinates)
- Error Invariant to angle of rotation

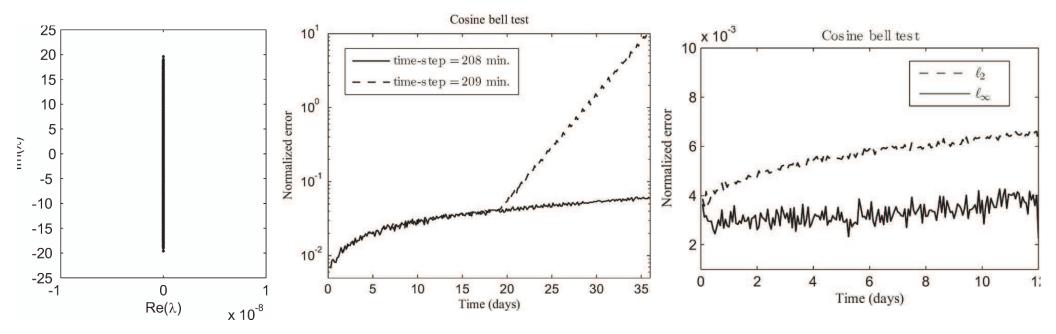
Gaussian RBFs N = 1849 nodes, $\varepsilon = 6$ $\Delta t = 45$ minutes; 4th order Runge-Kutta







Stability Analysis



Eigenvalues of D_N <u>exactly</u> on imaginary axis

 D_N is a product of a positive definite matrix and an antisymmetric matrix (Platte and Driscoll, 2006)

Eigenvalues have to fit inside RK4's stability domain.

When largest stable time steps are used, time errors dominate

For best computational efficiency choose time steps so that time and space errors match

Here, N = 4096 the time step is **30 minutes** over space errors.

Comparison between main spectral methods on the sphere

For a ℓ_2 Error of 0.005:

Method	N = # of nodes	Time Step	Local Mesh	Cost per
			Refinement	Time Step
RBF	4096	30 minutes	Yes	$O(N^2)$
SH	32,768	90 seconds	No	$O(N^{3/2})$
DF	32,768	90 seconds	No	$O(N \log N)$
DG/SE	7776	6 minutes	Yes	O(<i>k M</i>)

Comments:-RBF code 37 lines in MATLAB using no built-in subroutinesSpectral Elements:k = number of elementsM = number of nodes/elementSpherical Harmonics: $a_k =$ 7396 harmonicsT170 (N=131,072, $\Delta t =$ 7.5 min. semi-implicit)

Code: Appendix B Flyer and Wright, JCP, 2007

ep = 6;	% Value of epsilon
R = $1/3;$	% Width of bell on unit sphere
alpha = pi/2;	% Angle of rotation measured from the equator

%%% Load Nodes: http://web.maths.unsw.edu.au/~rsw/Sphere/Energy/index.html and compute r² %%%

load('me1849.dat');x = me1849(:,1);y = me1849(:,2);z = me1849(:,3);% Cartesiantheta = atan2(z,sqrt(x.^2+y.^2));tt = theta(:,ones(length(theta), 1));% latitude - sphericalphi = atan2(y,x);pp = pn(:,ones(length(phi), 1));% longitude - sphericalr2 = 2 * (1 - cos(tt').*cos(tt).*cos(pp'-pp) - sin(tt').*sin(tt));% longitude - spherical

%%% Compute differentiation matrix D %%%%

```
\begin{split} B &= (\cos(alpha).*\cos(tt).*\cos(tt').*\sin(pp-pp') + \sin(alpha).*(\cos(tt).*\cos(pp).*\sin(tt') - \cos(tt').*\cos(pp').*\sin(tp))) \\ B &= 12 * pi * B.*(-ep^2*exp(-ep^2.*r2)); \\ A &= exp(-ep^2.*r2); \\ D &= B/A; \end{split}
```

%%% Initial Condition Cosine Bell %%%

 $h = 1000/2*(1+\cos(pi*(a\cos(\cos(theta).*\cos(phi)))/R));$ h(acos(cos(theta).*cos(phi)) >= R) = 0;

%%% Classic 4th Order RK %%%

dt = 12/288*5/6; % Time step for 12 day revolution for nt = 2:(1*288*6/5)d1 = dt*D*h; d2 = dt*D*(h + 0.5*d1); d3 = dt*D*(h + 0.5*d2); d4 = dt*D*(h + d3); h = h + 1/6*(d1 + 2*d2 + 2*d3 + d4); end

Moving Vortex Roll-Up on A Sphere: Local Node Refinement

(Flyer & Wright, JCP,2007, Flyer & Lehto, JCP, 2010)

Initial condition

Solution after 12 days

Linear convection with a vortex-like flow field (wind field is time-dependent)

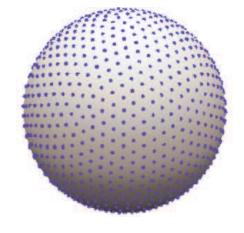
Numerical implementation Minimal energy (ME) nodes

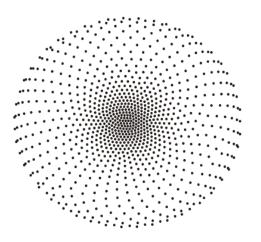
Refined nodes

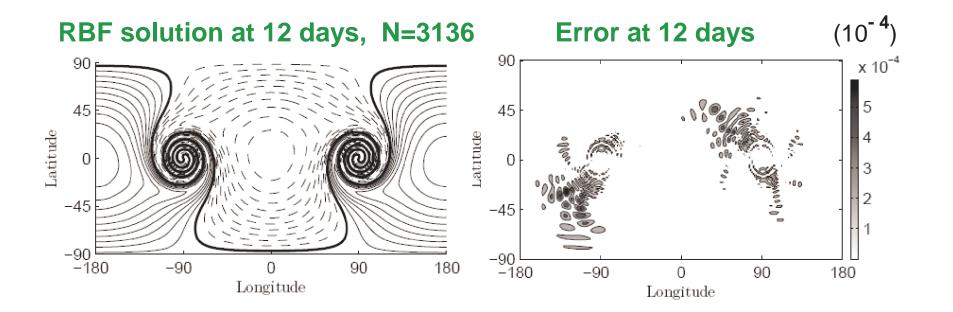
IMQ RBFs: $\phi(r) = \frac{1}{\sqrt{1 + \varepsilon^2 r^2}}$

N = 3136 nodes (1849 shown in figures to the right)

Method of lines (MOL) time stepping with standard Runge-Kutta, 4th order







Method		Reso	olution	Time step	Error
		N (total)	Typical angular	Minutes	I_2 error
	Without local refinement				
RBF	Radial basis functions	3,136	6.4 °	(2hr) 60	4 × 10 ⁻³
FV	Finite Volume (cubed sphere)	38,400	1.125 °	30	2 × 10 ⁻³
DG	Discontinuous Galerkin	9,600	2.6 °	6	7 × 10 ⁻³
	With local refinement				
RBF	Radial basis functions	3,136	-	(50) 20	8 × 10 ⁻⁵
FV	Finite Volume (3 levels.lat-long)	-	5 ° - 0.625 °	1-3	2 × 10 ⁻³

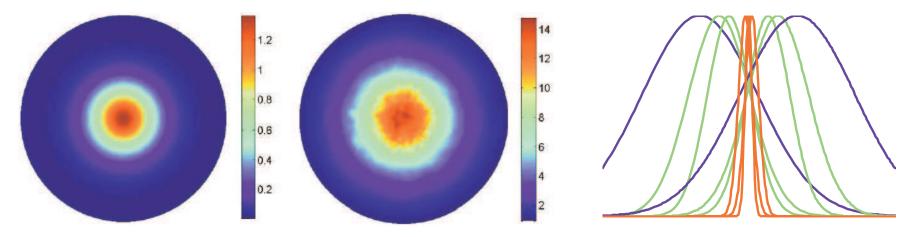
For the same accuracy, RBFs use less node points with larger time steps

Variable Shape Parameter of RBF, Epsilon *E*

(Fornberg and Zuev, 2007)

When clustering nodes, the shape parameter must be vary to avoid Runge Phenomena

Heuristic: Inverse of Euclidean distance to nearest neighbor node



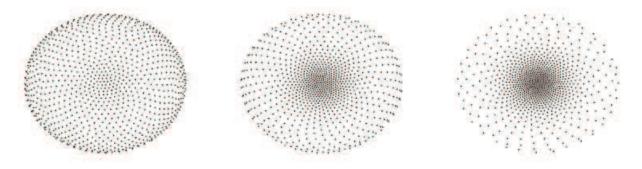
 ω $d_j = 1/\ell_2$ distance to nearest neighbor Cross-section view of RBFs

$$\varepsilon_{j}(\varphi_{j},\theta_{j}) = \varepsilon \frac{\max_{all j} d_{j}}{d_{j}}$$

optimal value for $\mathcal{E} \sim O(1)$

Local Refinement and Matrix Conditioning

In refinement scheme, 'c' is a parameter that controls the amount of clustering



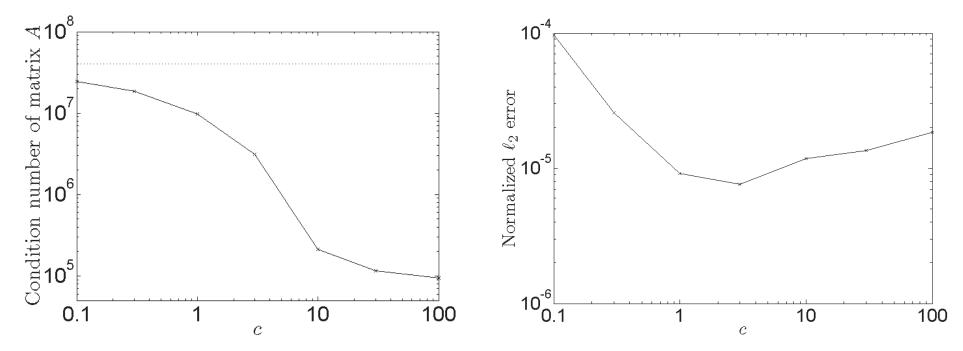
c = 1

c = 0.1

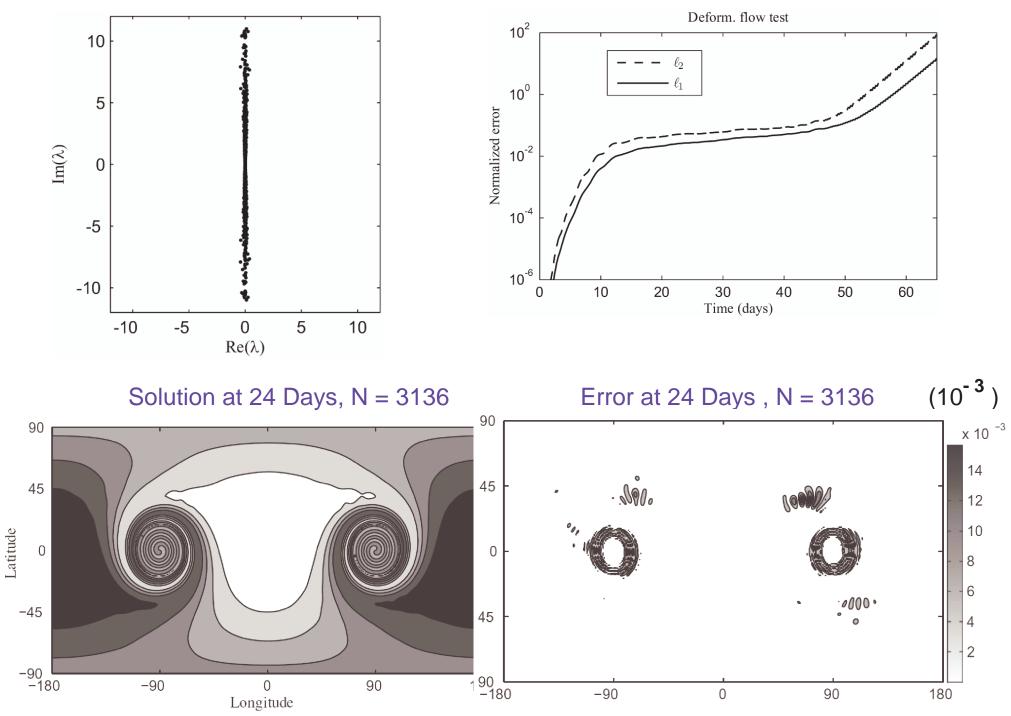
c = 10

Clustering nodes \rightarrow the shape parameter must vary to avoid Runge Phenomena \rightarrow

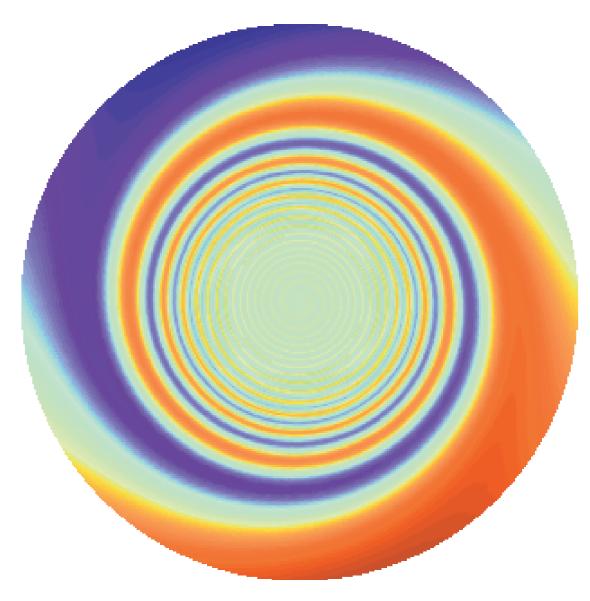
Inverse of Euclidean distance to nearest neighbor



Eigenvalue Study



Exact Solution at 45 Days



 No adverse effects of positive real parts until solution features have become too fine to be resolvable (theoretical limit 2 nodes / wave length)

Go Nonlinear - Shallow Water Equations on a Sphere (Cartesian)

(Flyer and Wright, Proc. Roy. Soc. A, 2009)

Acceleration Advection Coriolis Pressure

$$\frac{\partial u}{\partial t} = -\mathbf{p}_x \cdot \begin{bmatrix} (\mathbf{u} \cdot \mathbf{P} \nabla) u + f(\mathbf{x} \times \mathbf{u}) \cdot \hat{\imath} + g(\mathbf{p}_x \cdot \nabla) h \\ (\mathbf{u} \cdot \mathbf{P} \nabla) v + f(\mathbf{x} \times \mathbf{u}) \cdot \hat{\jmath} + g(\mathbf{p}_y \cdot \nabla) h \\ (\mathbf{u} \cdot \mathbf{P} \nabla) w + f(\mathbf{x} \times \mathbf{u}) \cdot \hat{\mathbf{k}} + g(\mathbf{p}_z \cdot \nabla) h \end{bmatrix},$$
RHS

$$\frac{\partial v}{\partial t} = -\mathbf{p}_y \cdot \text{RHS}, \qquad \frac{\partial w}{\partial t} = -\mathbf{p}_z \cdot \text{RHS}, \qquad \frac{\partial h}{\partial t} = -(\mathbf{P} \nabla) \cdot (h\mathbf{u})$$

Sphere Projection Matrix **P**

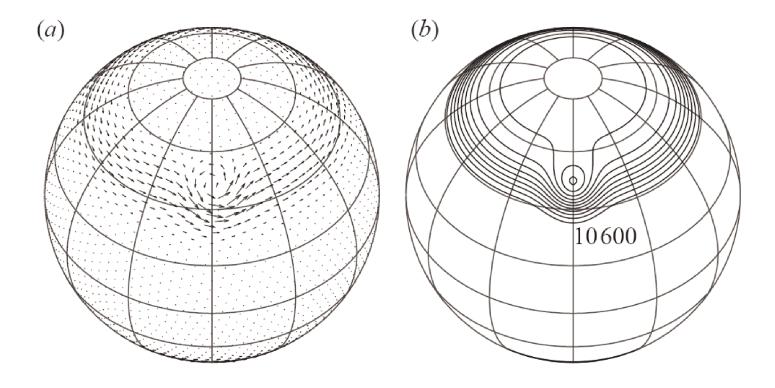
$$\mathbf{P} = \begin{bmatrix} \frac{p_x}{p_y} \\ \frac{p_z}{p_z} \end{bmatrix} = \begin{bmatrix} (1 - x^2) & -xy & -xz \\ -xy & (1 - y^2) & -yz \\ -xz & -yz & (1 - z^2) \end{bmatrix}$$

Forced Translating Low Pressure System: RBF Shallow Water Model

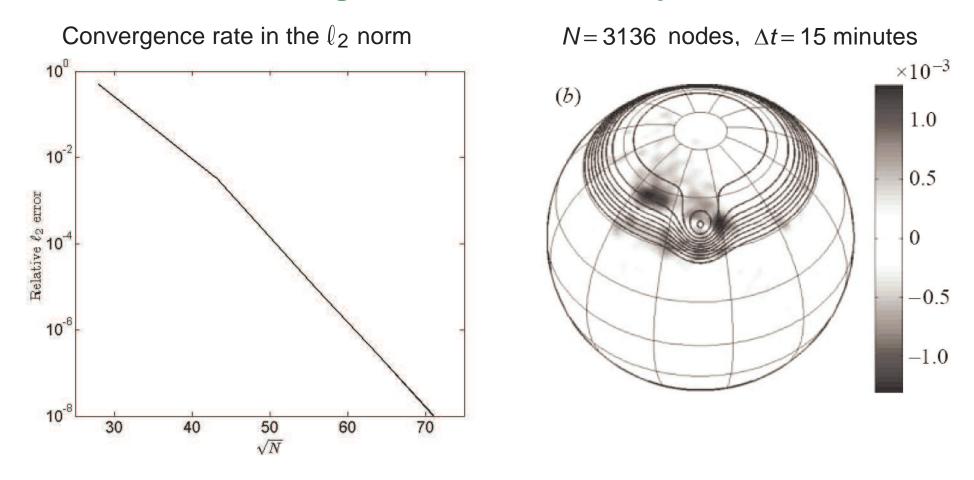
Forcing terms added to the shallow water equations to generate a flow that mimics a short wave trough embedded in a westerly jet.

Initial Velocity Field

Initial Geopotential Height Field



Errors after Wave Trough Has Traveled 5 Days



Relative Difference in Mass and Energy after:

Mass	5 days	25 days	Energy	5 days	25 days
N=3136	2 × 10 ⁻⁹	4 × 10 ⁻⁹		-3 × 10 ⁻⁹	2 × 10 ⁻⁹
N=4096	1 × 10 ⁻¹¹	-2 × 10 ⁻¹⁰		-1 × 10 ⁻¹⁰	-5 × 10 ⁻¹⁰

Comparison with Commonly Used Methods

Method	N	Time step	Relative ℓ_2 error
RBF	4,096	8 minutes	2.5 × 10 ⁻⁶
	5,041	6 minutes	1.0 × 10 ⁻⁸
Sph. Harmonic	8,192	3 minutes	2.0×10^{-3}
Double Fourier	32,768	90 seconds	4.0×10^{-4}
Spect. Elem.	24,576	45 seconds	4.0×10^{-5}

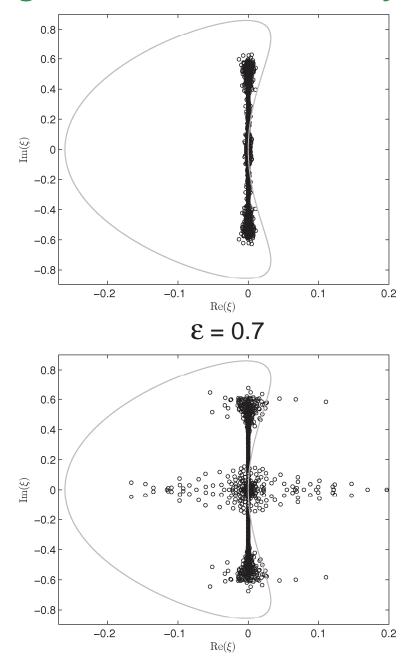
Time Step for RBF: Temporal Errors = Spatial Errors Time Step for Others: Stability Limited

RBF Computational times, in Matlab on 2.66 GHz Single Core Processor

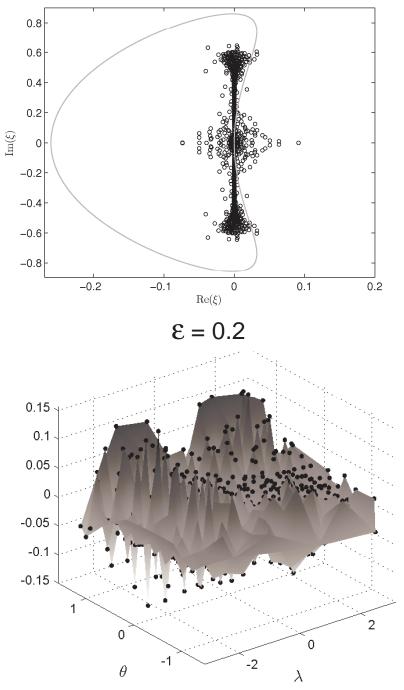
N	<i>N</i> Runtime per time step	
	(sec)	
4,096	0.41	6 minutes
5,041	0.60	12 minutes

For much higher numerical accuracy, RBFs uses less nodes & larger time steps

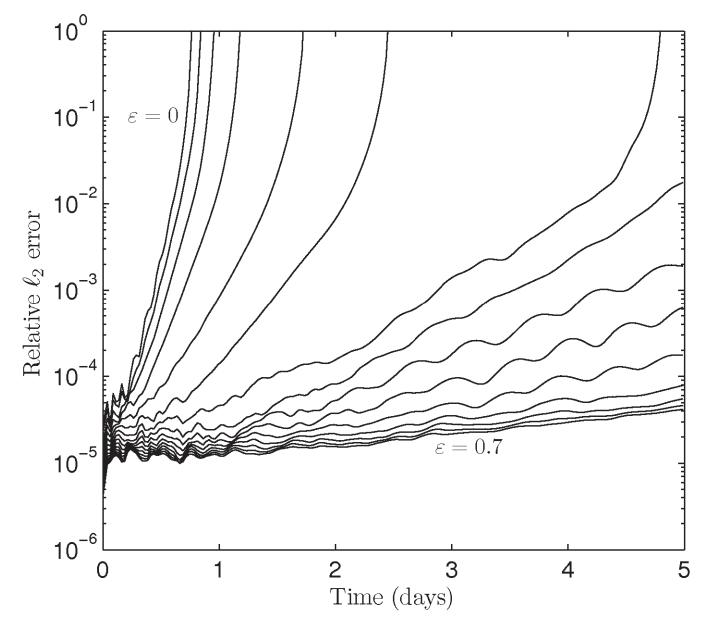
Eigenvalues, Time Stability, and E - refinement



0.0 = 3

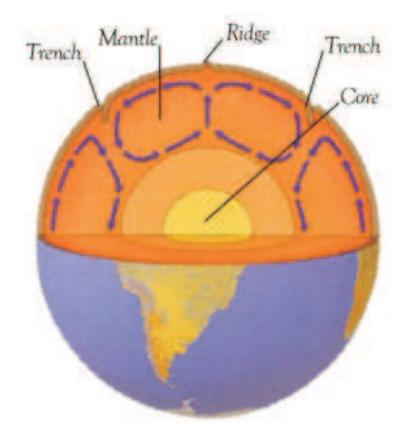


Error as a function of $\boldsymbol{\epsilon}$



 $\epsilon \rightarrow 0 \Rightarrow$ basis reproduces SH \Rightarrow SH notorious for aliasing \Rightarrow Filter always imposed

Next Step: Go Full Dynamic 3D in Spherical Geometry Mantle (Thermal) Convection in a 3D Spherical Shell



The Physical Model

- Infinite Prandtl Number, $Pr = \frac{\text{kinematic viscosity}}{\text{thermal diffusivity}} \rightarrow \infty$
- Constant Viscosity

Equations:

$$\nabla \cdot \underline{u} = 0 \quad \text{Incompressible}$$

$$\nabla \cdot (\nabla \underline{u} + (\nabla \underline{u})^T) + \text{Ra } T \hat{r} = \nabla p \quad \text{Stokes flow}$$

$$\frac{\partial T}{\partial t} + \underline{u} \cdot \nabla T \qquad = \nabla^2 T \text{ Advection-Diffusion}$$

Ra = Rayleigh number; related to ratio of heat convection to heat conduction

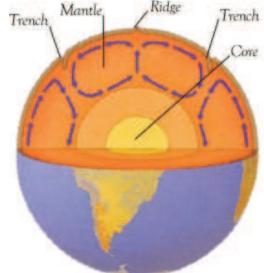
Momentum: $\underline{u} = \nabla \times \nabla \times \Phi \hat{r} \quad \Phi = \text{velocity potential (Chandrasekhar, 1961)}$

$$\nabla^4 \Phi = \operatorname{Ra} T \longrightarrow \quad \triangle \Omega = \operatorname{Ra} T \\ \triangle \Phi = \Omega$$

BCs:

<u>*U*</u> is shear-stress free (slip) on impermeable inner and outer boundaries,

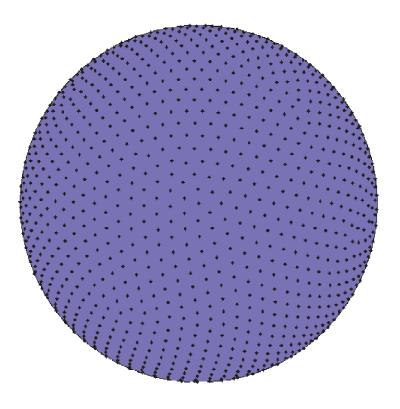
- T = 1 at inner boundary (outer core of Earth)
- T = 0 at outer boundary (crust)

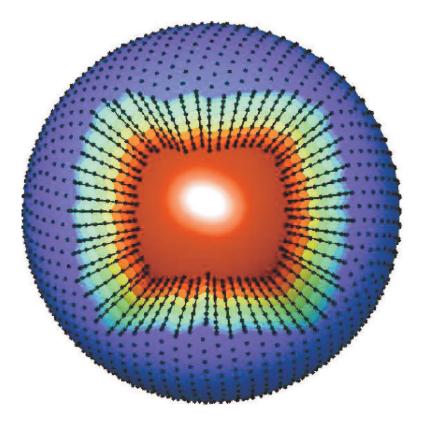


Hybrid RBF-Chebyshev

(Wright, Flyer, Yuen, Geophysics, Geochemistry, Geosystems, 2010)

Node Layout for hybrid RBF-Chebyshev discretization:





N nodes on a shell - RBF

M Chebyshev nodes radially

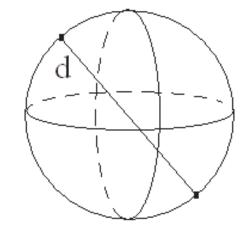
RBF: Algorithmic Simplicity

(Wright, Flyer, Yuen, Geochem., Geophy., Geosys., 2010)

Example:

$$d = ||\underline{x} - \underline{x}_k|| = \sqrt{(x - x_k)^2 + (y - y_k)^2 + (z - z_k)^2}$$

$$\Delta \text{ surface } \phi(d) = \frac{1}{4} \left((4 - d^2) \frac{\partial^2 \phi(d)}{\partial d^2} + \frac{4 - 3d^2}{d} \frac{\partial \phi(d)}{\partial d} \right)$$



 \triangle surface $\phi(d)$ Code using Gaussian RBFs, $e^{-(ep^2d^2)}$, (2 lines)

$$d2 = 2 * (1 - (x^*x' + y^*y' + z^*z')) ;$$

Lsfc = $1/4 *((4 - d2)*(-2*ep^2 *exp(-ep^2*d2) + 2*ep^4 *d2*exp(-ep^2*d2)) + (4 - 3*d2)./sqrt(d2)*(-2*ep^2*sqrt(d)*exp(-ep^2*d2)));$

Algorithmic Simplicity:

- Independent of Dimension
- Independent of Coordinate System

RBF Computational Algorithm

(i)
$$\nabla^4 \Phi = RaT \Leftrightarrow \begin{cases} \Delta \text{ surface } \Omega + \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) \Omega = r^2 RaT \\ \Delta \text{ surface } \Phi + \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) \Phi = r^2 \Omega \end{cases}$$

(ii)
$$\underline{u} = \nabla \times \nabla \times \Phi \,\hat{\boldsymbol{r}}$$

(iii)
$$\frac{\partial T}{\partial t} + \left[\underline{u} \cdot \left(\nabla \text{ surface } + \frac{\partial}{\partial r} \mathbf{e}_r \right) \right] T = \left[\Delta \text{ surface } + \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) \right] r^2 T$$

- 1) Discretize $\triangle_{surface}$, $\frac{\partial}{\partial \theta}$, $\frac{\partial}{\partial \varphi}$ using N RBFs
- 2) Discretize $\frac{\partial}{\partial r}$, $\frac{\partial^2}{\partial r^2}$ using *M* Chebyshev polynomials
- 3) Use *T* initial condition to solve for $\Omega \searrow$
- 4) Use Ω solution to solve for Φ

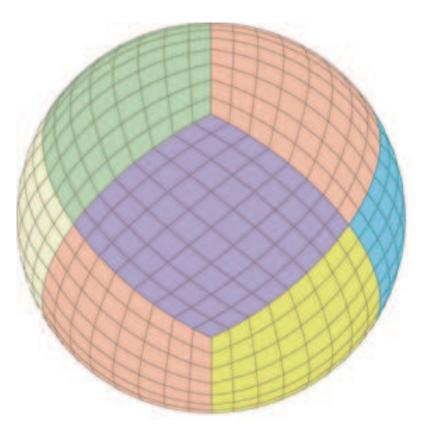
Use eigenvector decomposition $\nearrow O(N^2M)$ instead of $O(N^2M^2)$

- 5) Use Φ solution to calculate \underline{u}
- 6) Discretize time using a *time-splitting* scheme
 - 2nd order Adams-Moulton (AM2) for diffusion operator (implicit)
 - 3rd order Adams-Bashforth (AB3) for advection operator (explicit)
- 7) Time-step energy equation to get new field for T, Back to Step 3

Comparative Study

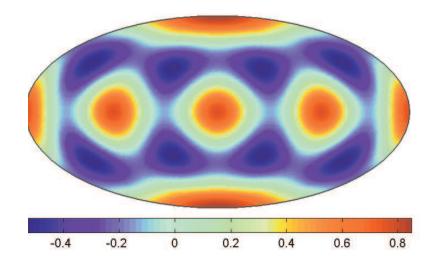
Three Numerical Methods

- 1) RBF Chebyshev
- 2) Finite Element (NSF funded CitcomS)
- 3) Spherical Harmonic Finite Volume or Finite Difference (CNRS France, Germany)



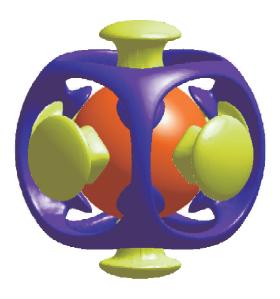
CitcomS 12 Equal Caps Each *N* x *N* x *N* Elements Second - Order

Community Benchmark, Ra = 7,000: Validation of RBF Method



Initial condition: $f(r) \left[Y_4^0 + \frac{5}{7}Y_4^4 \right]$

sinusoidal in r



Isosurface of perturbation temperature Blue: down-welling, Yellow: up-welling, Red: core

N = 1600 nodes on each spherical shell M = 23 shells Total: 36,800 unknowns 8 min. 16 secs wall-clock time (desktop with single quare core processor)

Comparisons against main previous results from the literature

Nu = ratio of convective to conductive heat transfer across a boundary

For Steady State with No Internal Heating \implies Nu outer = Nu inner

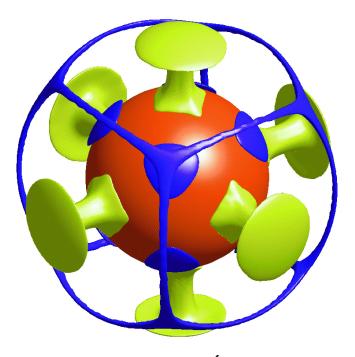
Method	No of nodes	Nu outer	Nu inner	<v<sub>RMS ></v<sub>	< T >
Finite volume	663,552	3.5983	3.5984	31.0226	0.21594
Finite elements	393,216	3.6254	3.6016	31.09	0.2176
(CitcomS)					
Finite differences	12,582,912	3.6083		31.0741	0.21639
(Japan Earth Simulator)					
Spherical harmonics -FD	552,960	3.6086		31.0765	0.21582
Spherical harmonics -FD	Extrapolated	3.6096		31.0821	0.21577
RBF-Chebyshev	36,800	3.6096	3.6096	31.0820	0.21578

RBFs Nail The Answer!

And Higher *Ra*....?

Traditional view: Unsteady flow does not occur till $Ra \sim O(10^5)$ Lower Ra is uninteresting \rightarrow goes to stable steady state

Reasonable Assumption? Yes



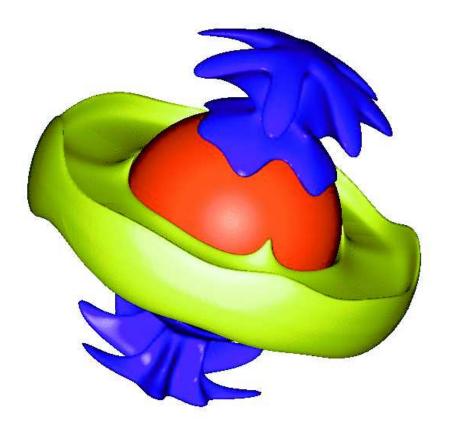
Method	No. of nodes	Wall Clock Time
Finite elements	1,411,788	2.78 days
(CitcomS)		(12)
Spherical	1,638,400	\sim 2 days
harmonics -FV		(8)
RBF-Chebyshev	176,128	6 hours 27 mins
		(1)

RBF-CH only used 1 CPU, others used multiple processors Fast turn-around gave us the ability to question the physics

Isosurface of perturbation temperature Blue: down-welling, Yellow: up-welling, Red: core

Same Ra but higher perturbation regime

At t = 0.236 or 13.5 billion years



RBF-Chebyshev

CitcomS

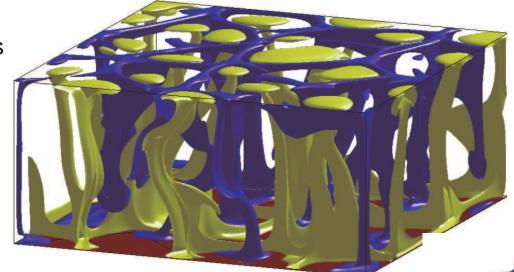
High Ra: Comparing Two Novel Simulations

Novelty:First mantle convection model run on a Graphics Processing Unit (GPU)Strength:Speedup times up to a factor of 15DrewbeekOld erder ward discipative, per enhanced grapherical grapherica

Drawback: 2nd-order, very dissipative, non-spherical geometry

Nodes: 32 million Time step: 34,000 yrs

 $Ra = 10^{7}$



Novelty: Largest RBF simulation Strength: Only Spectral accurate simulation Drawback: Computationally slow

Nodes: 531,411 Time step: 34,000 yrs

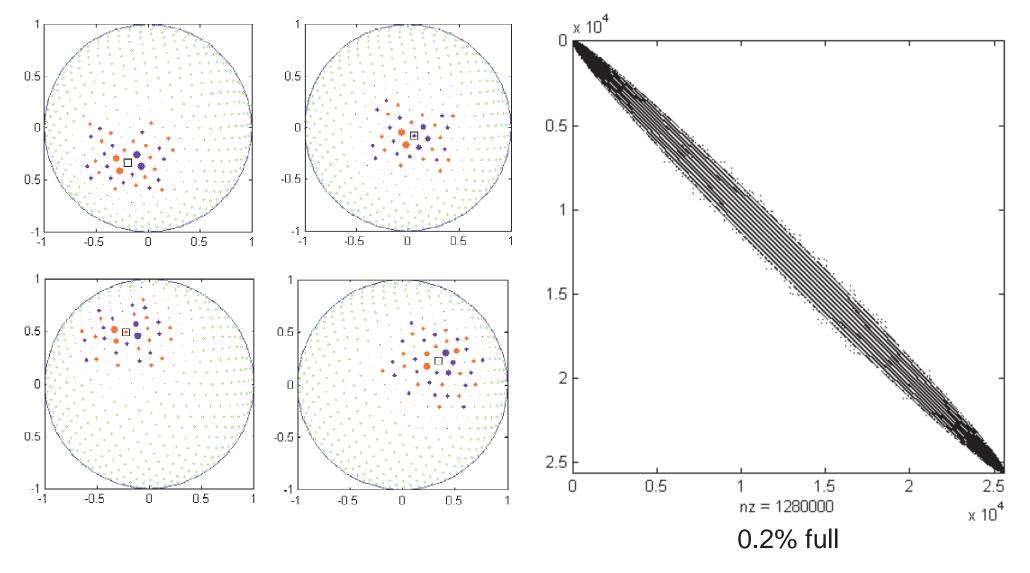
Ra = 10⁶

Reducing computational cost: RBF-based Finite Differences

Calculate RBF derivative approximations using a localized stencil rather than all nodes

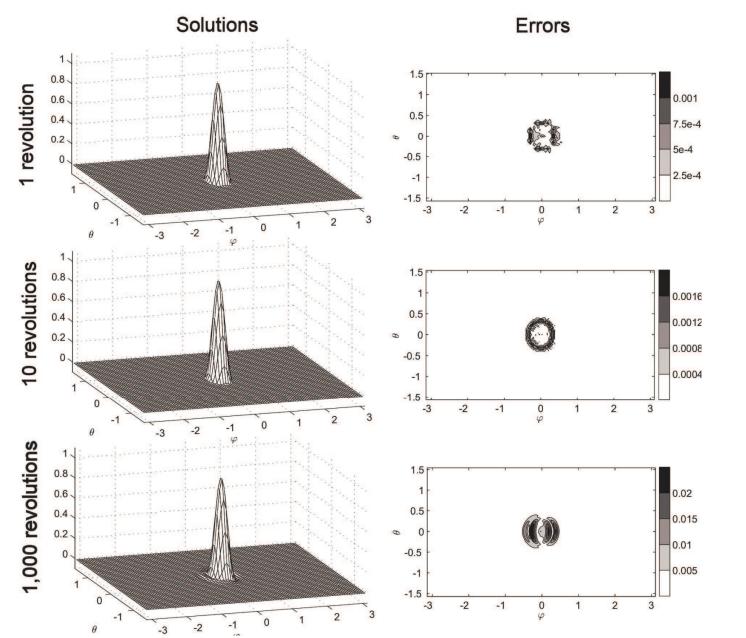
4 stencils to calculate derivative approximations at square marker using 75 nearest nodes

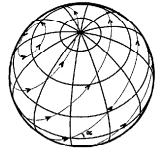
RBF-FD matrix to approximate d/dx at all nodes for N=25000, local stencil size=50



Solid Body Rotation of C¹ Cosine Bell with RBF-FD

(Fornberg and Lehto, JCP, 2011)

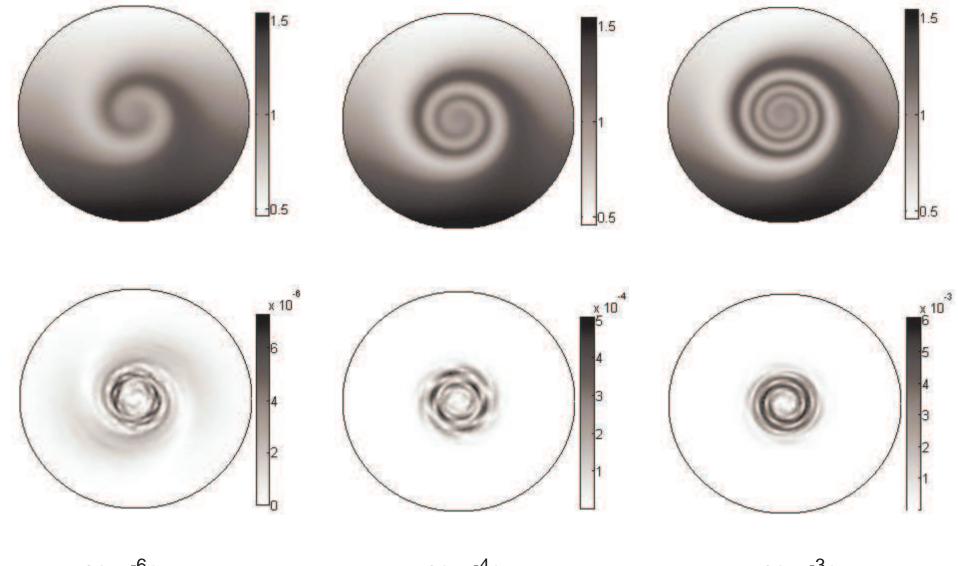




N = 25,000 local stencil size = 74 Δ^8 - type hyperviscosity

Stationary Vortex Wrap-up with RBF-FD

Total Number of nodes: 25,000 , Local stencil size: 50 , $\Delta t = 45$ minutes

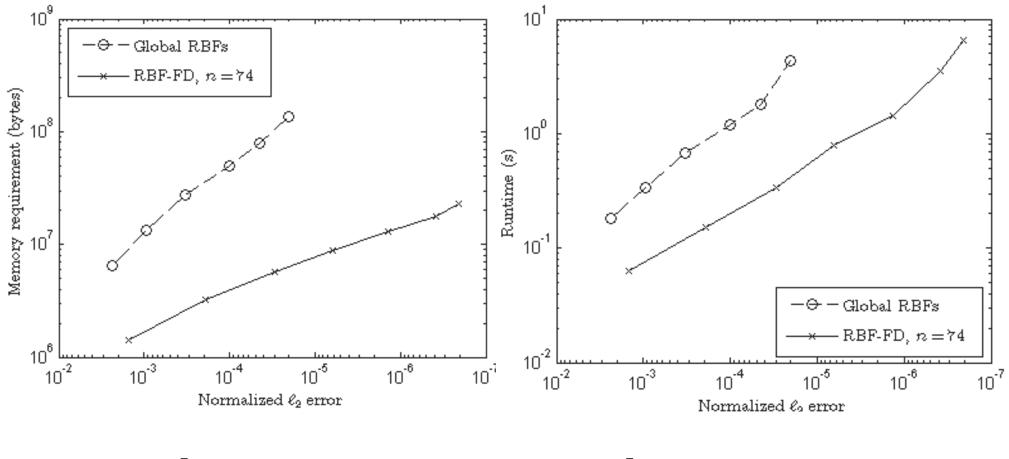


Error: $O(10^{-6})$

O(10⁻⁴)

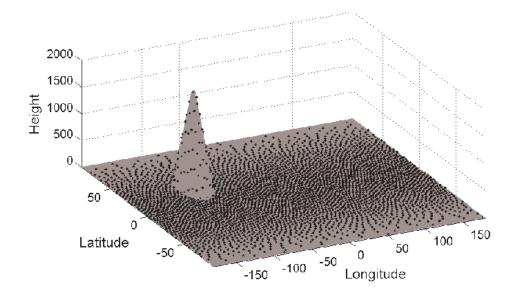
O(10⁻³)

A Look at Computational Cost Reduction (Vortex Wrap-up Case)



 ℓ_2 Error 10⁻⁵: 100MB (Global RBF) 7MB (RBF-FD) ℓ_2 Error 10⁻⁵: Runtime 10 seconds (Global RBF) Runtime 0.7 seconds (RBF-FD)

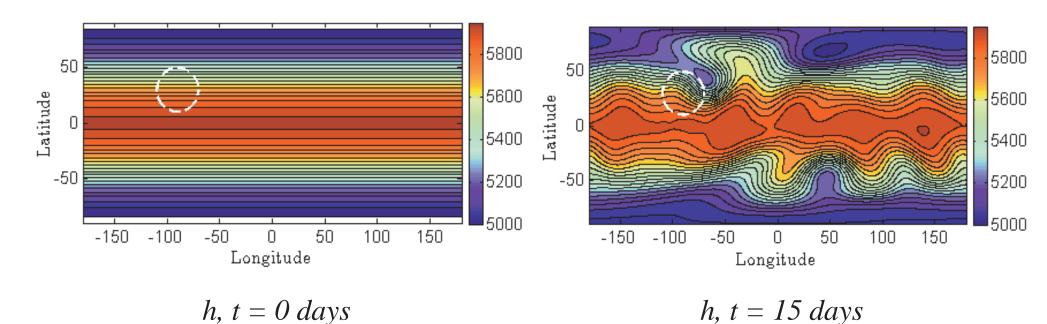
Flow over an Isolated C⁰ Cone Mountain with RBF-FD



Cone Mountain

Shallow Water Equations Look at: Convergence Effects of Gibbs phenomena Hyperviscosity Runtime

N = 25,600 stencil size = 31



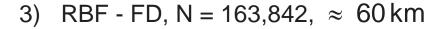
Specifications for RBF-FD Runs for C⁰ Cone Mountain

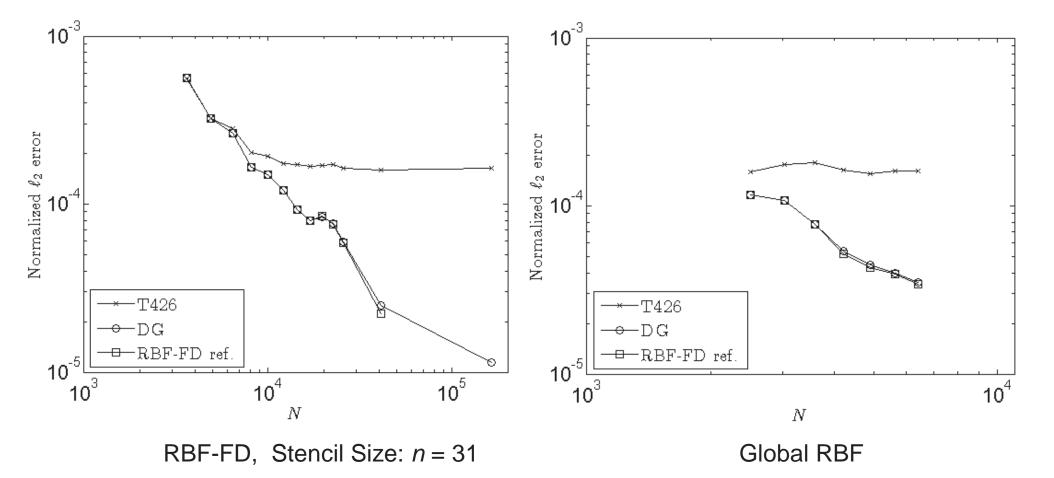
Ν	Stencil size, n	Resolution (km)	Time step (min)	ℓ₂
3,600	31	400	20	5 · 10 ⁻⁴
6,400	31	300	15	2 · 10 ⁻⁴
12,100	31	220	12	1 · 10 ⁻⁴
25,600	31	150	5	6 · 10 ⁻⁵
40,962	31	120	3	2 · 10 ⁻⁵
163,842	31	60	1	1 · 10 ⁻⁵

Less than 50 km resolution \rightarrow saturation error, stable algorithms needed

Convergence Comparison Using 3 Different Reference Solutions

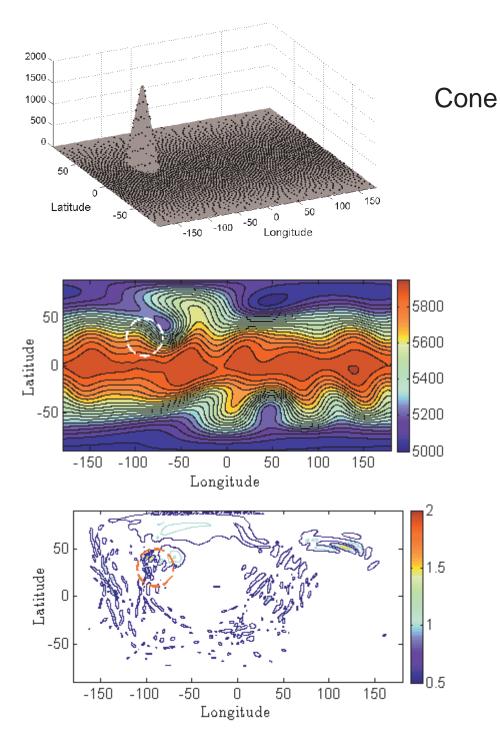
- 1) Standard of the Literature/Comparison: NCAR's Sph. Har. T426 \approx 30 km at equator
- 2) New Model at NCAR Discontinuous Galerkin Spectral Element, $\approx 30 \text{ km}$

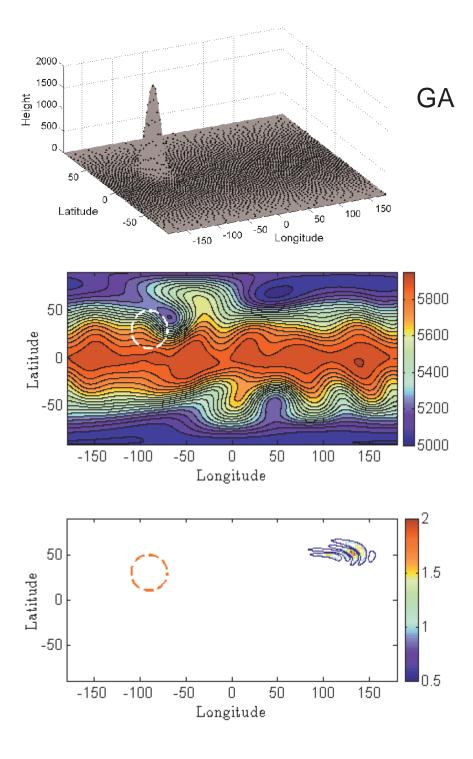




First evidence that the standard of comparison for over a decade, NCAR's Spectral Transform Model, is not so accurate.

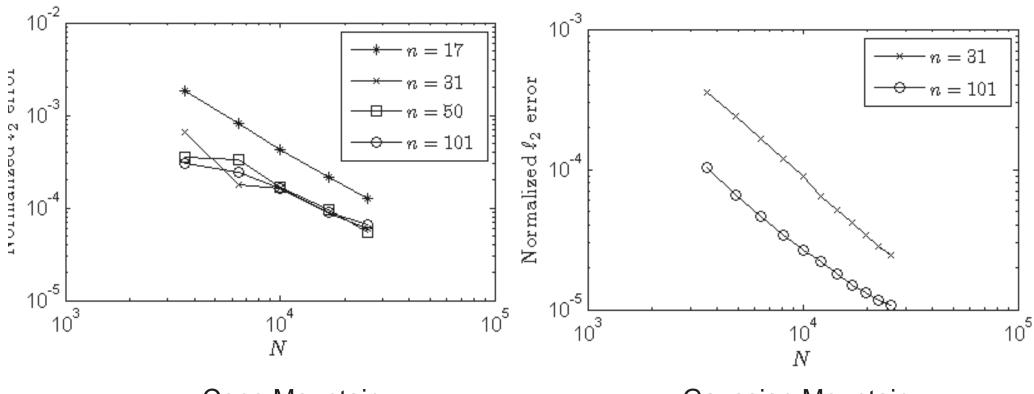
Error due to Gibbs Phenomena (Reference solution is 30km DG - SE)





Effect of Gibbs on Stencil Size

Reference solution is 60 km RBF-FD.

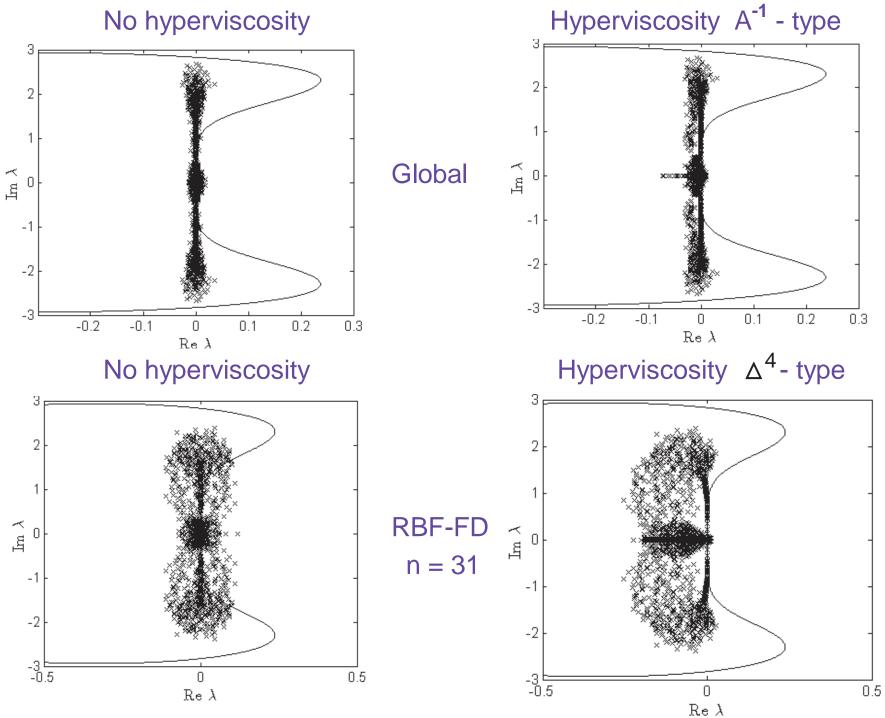


Cone Mountain

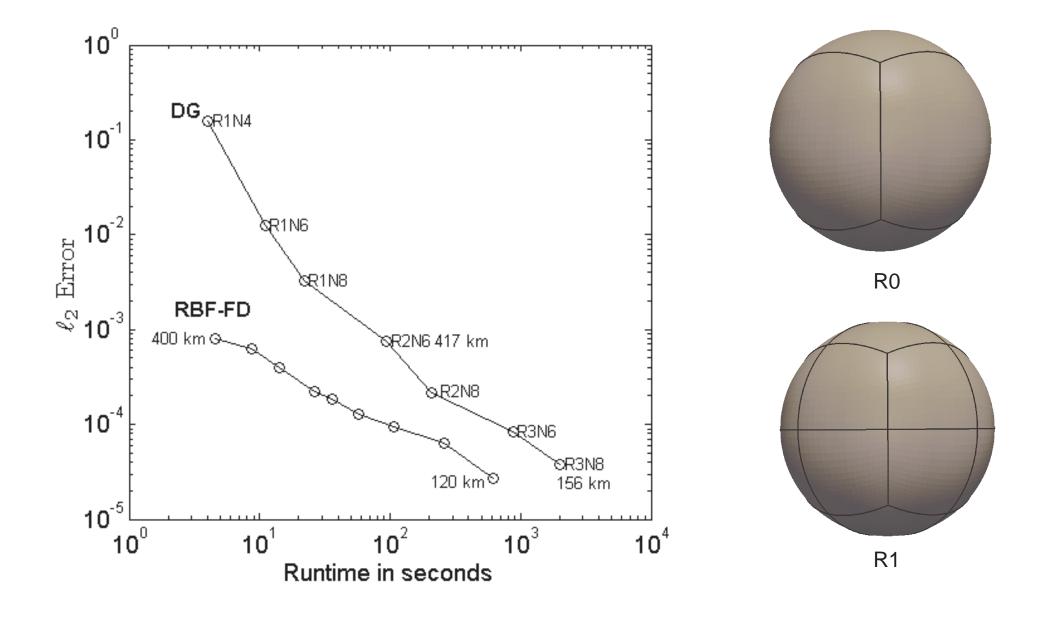
Gaussian Mountain

As stencil size increases for fixed *N*, derivative approximations become more global but accuracy is not increased due to non-smooth forcing For smooth forcing, accuracy increases with stencil size but rate of convergence is not much greater due to steepness of mountain

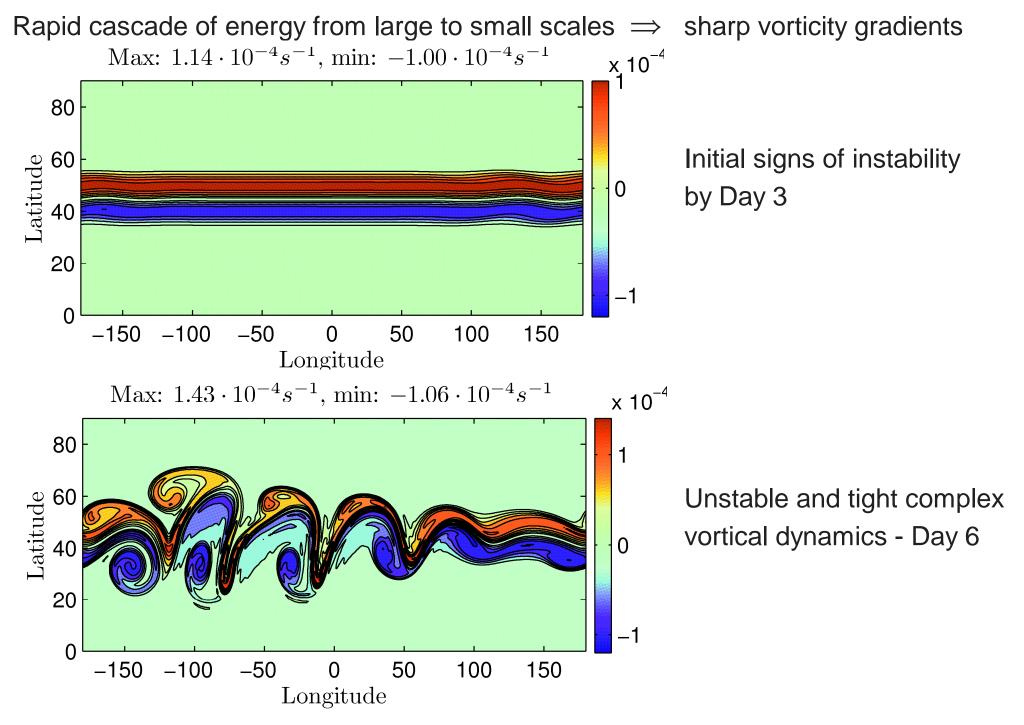
Hyperviscosity



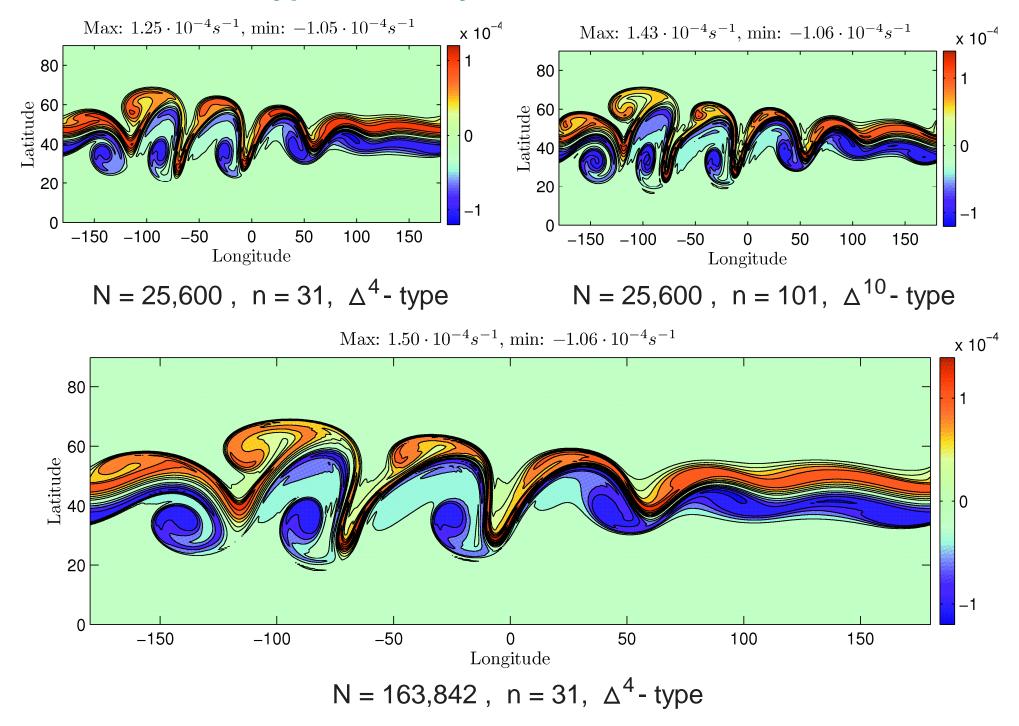
Runtime Comparison on Intel i7 3.0 Ghz single core processor



Rapid Evolution of a Highly Unstable Wave in a Mid-Latitude Jet

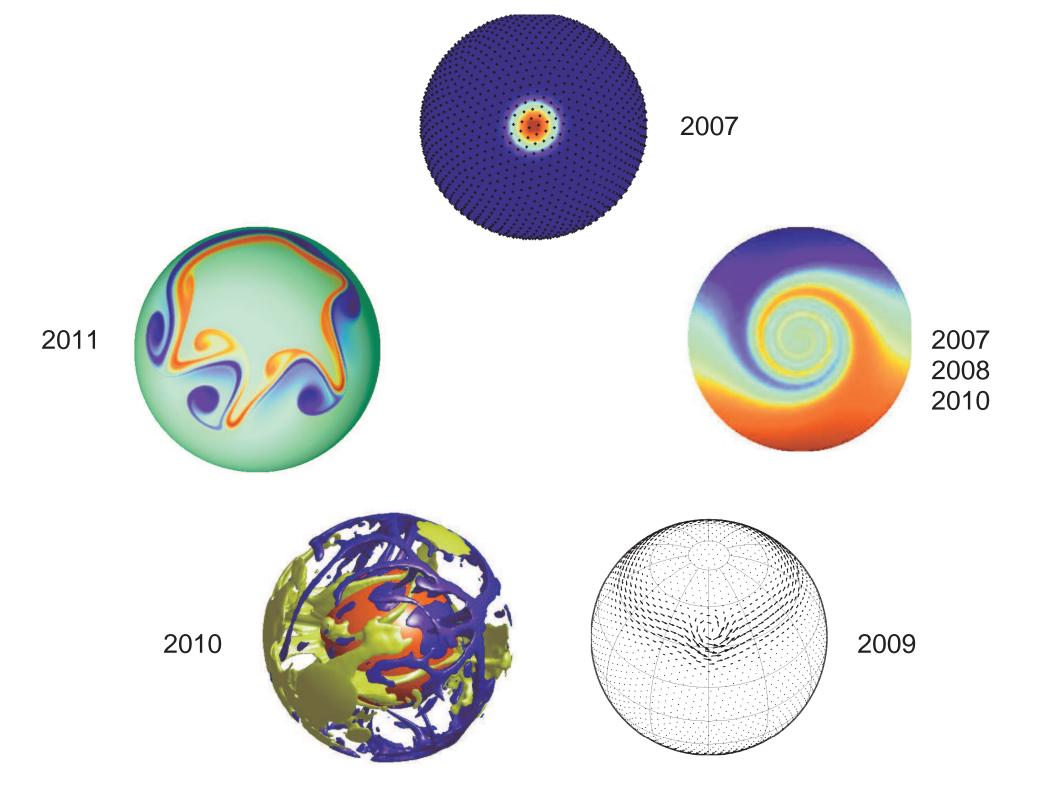


Stencil Size and Hyperviscosity



RBF

SEM (St-Cyr et al.)



THANK YOU

Special Thanks to: Prof. Grady B. Wright and Mr. Erik Lehto (Uppsala U.)