Quantitative Engineering Sustainability:
Integration of Mechanics-based Models and Life
Cycle Environmental Footprint

Arghavan Louhghalam
Assistant Professor
University of Massachusetts Dartmouth



.‘l.
s.“‘
A&
~ .\»;s

utterstock.com - -

¢




Path to sustainable roadway network

Agriculture

10%

Residentia

commercial -
Electricity
o,
e 32%

Industry
20%

Transportation
28%

EPA 2012

Sustainability

[ Quantitative Engineering b

Pavement characteristics

Environmental impact

Recycling Resource Extraction

Placement

\ 4
Low use-phase impact via informed
decision making:

« Optimal maintenance strategies

« Sustainable design of future
structures
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Dissipation mechanisms

Energy distribution in passenger car versus
speed as a percentage of available power
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FRR=rollingresistance
0 Due to Texture, Roughness, and Deflection
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Key drivers of rolling resistance

©)

Pavement deflection™;

Stiffness & thickness matter!

Speed & temperature (specifically for
inner-city pavement systems)

o Pavement roughness™*:

Both road and vehicle dependent.
Evolution in time: material specific

o Pavement texture:

Tire-pavement contact area
Critical for safety

* Louhghalam A, et al.. Journal of Engineering Mechanics (2013)

**Louhghalam A, et al.. Journal of Engineering Mechanics (2015)




Deflection-induced PVI model

k Distance lag o . Klab
due to damping{/_é| Hind

P
Max deflection behind the wheel; wheel on uphill

Clausius-Duhem inequality (2"9 law of thermodynamics)

2
Dissipated 5. _ 1 M (x,t)d C _ _p
energy ¢ vr ), EI — 0 = 1

* Louhghalam A, et al.. Journal of Engineering Mechanics (2013)
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Deflection-induced PVI

65 o (Vr)™ ' P2 =4 p=3/4 = 1/4

- P : Vehicle weight

- FE: Pavement modulus
- h: Pavement thickness i
o 7. Relaxation time

o k: Substrate stiffness
o T : Temperature

o V: Vehicle speed




Key drivers of rolling resistance

o Pavement deflection™:
« Stiffness & thickness matter!

« Speed & temperature (specifically for
inner-city pavement systems)

o Pavement roughness™*:
» Both road and vehicle dependent
» Evolution in time: material specific

o Pavement texture:
* Tire-pavement contact area
 Critical for safety

* Louhghalam A, et al.. Journal of Engineering Mechanics (2013)

**Louhghalam A, et al.. Journal of Engineering Mechanics (2015)



Roughness-induced PVI

Road roughness profile
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o Roughness-induced dissipated energy in
— vehicle suspension must be compensated
) — =S by the engine power to maintain a constant
speed.

E[5€] = K3mwi VP BRI F (7, 8, €, w)

Scaling relationship

0E o IRI’Vw—2
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Up-scaling PVI emission to network-level environmental impact

Mechanics-based models = platform for integrating big data

- Total network level environmental impact
- Scientifically-informed maintenance decisions

network scale

Virginia Interstate Highways Caltrans roadway network

structural scale

Asphalt

Asphalt
65%
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Blending big data into excess CO, emissions

Virginia Interstate Highways

Roughness-
induced PVI model
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Virginia interstate highways emissions

Annual CO, emissions (2013)

Baltimore Metro

(CO, ton/km)
0-4
4-12
12-38
38-116
116-362

12



Carbon management via PVI

Strategies for pavement maintenance based on
use-phase environmental impact ranking
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Carbon management via PVI

Strategies for pavement maintenance based on
use-phase environmental impact ranking
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Top 10% contribution to excess CO, emission is due to 1.5% of the analyzed roadway

network
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Future Outlook

Multi-scale time-dependent framework for
sustainable/durable pavement infrastructure
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Multi-scale time dependent framework

) ) ( )
Material scale Structural scale Network scale
* Mechanics Big data
Thermodynamics - analytics

=

[Masoero et al., PRL, 2012]

. J
! ‘ Criteria

g Early age cracking A g Damage A

* Thermal gradient mechanisms Informed

1 * Drying « Evolution of road decision

» Shrinkage roughness .

« Alkali silica reaction « Evolution of making
_* Freeze-thaw ) . structural properties
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Multi-scale time-dependent framework

Structural scale

Big data
analytics

X

\_ Y
4 N\
* Evolution of
characteristics of
structure over time
\ J

~\
Network scale
- Criteria
)
. A

* Total environmental
impact over full life-
cycle

Informed decision
making

~
» Maintenance strategy
« Decision for building
new structures
» Real-time decisions
J
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Big data analytics & mechanistic modeling

* Real-time decision making

— Avoiding routes with high environmental impact (fuel
consumption)
NO
* Predictive models for future development decisions LEFT
— Truck lanes with specific pavement properties TU_RN

= Nokia HERE

Measured accelerations
LIDAR
Environmental impact!?

~ company.nokia.com
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Fracture mechanics based design

Axial Contribution

Bending Contribution
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Fracture mechanics-based design

ASR-induced fracture

Shrinkage-induced fracture

How much? Swelling

Compressive eigenstresses

of = —FEB.§

When? ASR Kinetics of ASR

£(t) 1 —exp(—t/7)

T 1t exp(—t/7e +71/T0)

Pavement joint spacing (ft)
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Elastic modulus = 30,000 MPa !

Fracture toughndss = 0.6 MPa m'2 |
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Critical time for cutting joints
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on-site monitoring via hydration

kinetics and by adapting to external
temperature

K = () x U (8) < Ko®




