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Path to sustainable roadway network

Low use-phase impact via informed 
decision making:
• Optimal maintenance strategies 
• Sustainable design of future 

structures
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Dissipation mechanisms

Due	to	Texture,	Roughness,	and	Deflection	

Beuving et	al.,	2004
http://www.en.wikipedia.org

Energy distribution in passenger car versus 
speed as a percentage of available power



o Pavement deflection*:
• Stiffness & thickness matter!  
• Speed & temperature (specifically for 

inner-city pavement systems) 

o Pavement roughness**: 
• Both road and vehicle dependent.
• Evolution in time: material specific

o Pavement texture: 
• Tire-pavement contact area
• Critical for safety

Key drivers of rolling resistance

* Louhghalam A, et al.. Journal of Engineering Mechanics (2013)
**Louhghalam A, et al.. Journal of Engineering Mechanics (2015)
.

5



Max deflection behind the wheel; wheel on uphill

Deflection-induced PVI model

Distance lag
due to damping
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Deflection-induced PVI

o P : Vehicle weight
o E : Pavement modulus 
o h :  Pavement thickness 
o t :  Relaxation time
o k :  Substrate stiffness
o T :  Temperature
o V :  Vehicle speed

�E / (V ⌧)�1 P 2 E�1/4 h�3/4 k�1/4

V

Scaling relationship



o Pavement deflection*:
• Stiffness & thickness matter!  
• Speed & temperature (specifically for 

inner-city pavement systems) 

o Pavement roughness**: 
• Both road and vehicle dependent
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Key drivers of rolling resistance

* Louhghalam A, et al.. Journal of Engineering Mechanics (2013)
**Louhghalam A, et al.. Journal of Engineering Mechanics (2015)
.
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Roughness-induced PVI
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o Roughness-induced dissipated energy in 
vehicle suspension must be compensated 
by the engine power to maintain a constant 
speed.
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ż2
⇤

E [�E ] = k2dms!
4�w
s V w�2E [IRI]2 F (�,�, ⇠, w)

Dissipated 
energy

�E / IRI2V w�2

Scaling relationship



10

Up-scaling PVI emission to network-level environmental impact

structural scale

• Total network level environmental impact
• Scientifically-informed maintenance decisions

network scale

Mechanics-based models = platform for integrating big data
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Blending big data into excess CO2 emissions 

Roughness-
induced PVI model

Traffic
AADT, AADTT

VDOT(2007-2013)

IRI (t)
VDOT(2007-2013)

Speed
WIM

Material Prop.
VDOT

Temperature
6 zones: NOAA

Thickness
VDOT

Pavement Type
VDOT(2007-2013)

Excess fuel 
consumption & 
CO2 emission

Deflection-induced 
PVI model

Virginia Interstate Highways
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Virginia interstate highways emissions

Total PVI impact (2013)
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Strategies for pavement maintenance based on 
use-phase environmental impact ranking
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Carbon management via PVI

Power law type 
behavior 
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Strategies for pavement maintenance based on 
use-phase environmental impact ranking
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Carbon management via PVI

Top 10% contribution to excess CO2 emission is due to 1.5% of the analyzed roadway 
network
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Selection 
criteria

Maintained 
roads

Random 10%

IRI 2.5%

Excess CO2 1.5%

10% reduction in CO2



Future Outlook

Multi-scale time-dependent framework for 
sustainable/durable pavement infrastructure
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Multi-scale time dependent framework

Structural scale Network scaleMaterial scale

Informed 
decision 
making

�⇤

�⇤

[Masoero et al., PRL, 2012]

• Early age cracking 
• Thermal gradient 
• Drying
• Shrinkage
• Alkali silica reaction 
• Freeze-thaw

• Damage 
mechanisms

• Evolution of road 
roughness 

• Evolution of 
structural properties

Mechanics
Thermodynamics

Big data 
analytics

Criteria
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Multi-scale time-dependent framework 

Structural scale Network scale

Informed decision 
making

• Evolution of 
characteristics of 
structure over time

• Total environmental 
impact over full life-
cycle

• Maintenance strategy
• Decision for building 

new structures
• Real-time decisions

Big data
analytics Criteria



• Real-time decision making
– Avoiding routes with high environmental impact (fuel 

consumption)

• Predictive models for future development decisions
– Truck lanes with specific pavement properties
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Big data analytics & mechanistic modeling

Nokia HERE

Measured accelerations
LIDAR 
Environmental impact!?

company.nokia.com



Fracture mechanics based design
Bending Contribution
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Compressive eigenstresses

⇠(t) =
1� exp(�t/⌧c)

1 + exp(�t/⌧c + ⌧L/⌧c)

Fracture mechanics-based design

How much? Swelling

When? ASR Kinetics of ASR

�p = �E�a⇠
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jordangc.com
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Characteristic length-scale 
of fracture

ASR-induced fracture

– Critical time for cutting joints
on-site monitoring via hydration    
kinetics and by adapting to external 
temperature
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