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Large-scale scientific applications 
are going to face severe resilience 

challenge at exascale!
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Abstract
Continuing increase in the computational power of supercom-

puters has enabled large-scale scientific applications in the ar-
eas of astrophysics, fusion, climate and combustion to run larger
and longer-running simulations, facilitating deeper scientific in-
sights. However, these long-running simulations are often inter-
rupted by multiple system failures. Therefore, these applications
rely on “checkpointing” as a resilience mechanism to store appli-
cation state to permanent storage and recover from failures.

Unfortunately, checkpointing incurs excessive I/O overhead on
supercomputers due to large size of checkpoints, resulting in a sub-
optimal performance and resource utilization. In this paper, we de-
vise novel mechanisms to show how checkpointing overhead can
be mitigated significantly by exploiting the temporal characteristics
of system failures. We provide new insights and detailed quantita-
tive understanding of the checkpointing overheads and trade-offs
on large-scale machines. Our prototype implementation shows the
viability of our approach on extreme-scale machines.

1. Introduction

Increase in the computational capability of supercomputers has en-
abled scientists to run larger simulations both in time and size, facil-
itating deeper scientific insights [1, 29]. Unfortunately, these long-
running simulations are often interrupted by multiple system fail-
ures. Therefore, applications have traditionally relied on “check-
pointing” as a resilience mechanism against failures. Checkpoint-
ing is a process by which applications periodically save their state
to permanent storage so they can restart from a previously known
stable state, in the event of a failure [16, 27].

Checkpointing and restoring the application state after a failure
exerts severe pressure on the I/O subsystem, as it involves writing
and reading a large amount of data from permanent storage [3, 6].
For example, GTC, a fusion application writes 20 TB of checkpoint
data per hour at-scale and has to read back at every failure.

To illustrate this, Fig. 1 (top) shows the time spent on I/O, use-
ful computation and wasted work1 for different system sizes. As the
system size increases, the time spent on I/O increases significantly
to perform a fixed amount of computation because of the increased
failure rate. The I/O overhead and wasted work are also dependent
on the frequency of checkpoints. For example, comparatively less
frequent checkpointing may decrease the I/O overhead (Fig. 1 (bot-
tom) vs (top)), but will increase the wasted work, possibly increas-
ing the application’s total execution time. Therefore, checkpointing
has implications to both storage and compute systems.

Unfortunately, both system administrators and the scientific ap-
plication programmers have a limited understanding of the inter-
play between checkpointing, the I/O overhead and the compute re-
source wastage, due to the non-trivial trade-offs involved and the

1 Wasted or lost work is the amount of work between the failure and the last
checkpoint that can not be recovered.
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Figure 1. Impact of checkpoint/restart mechanism on a large-scale
application checkpoint taken every hour (top), and every four hours
(bottom). Checkpoint and restart time 30 mins and 15 mins, respec-
tively. MTBF of each node is taken as 25 years and scaled according
to the system size. Large-scale scientific applications are weak-scaling,
i.e., the compute time per node remains a constant.

lack of a large-scale quantitative study. Therefore, the goal of this
paper is to understand, quantify and mitigate the impact of check-
pointing on the storage system on extreme-scale machines. The
study is driven using analytical models, statistical techniques, and
real large-scale computing facility parameters, logs and traces.

Contributions: First, we study the effect of the traditional peri-
odic checkpointing technique for a variety of leadership computing
applications, using an analytical model and simulation based vali-
dation. Our study reveals several interesting, previously unknown
insights. We show that the analytically derived optimal checkpoint
interval, though difficult to determine in a dynamic environment,
can be approximated and works well in most situations.

Second, we investigate failures on multiple leadership comput-
ing facilities to understand their impact on I/O overhead and com-
pute resource wastage. One of our interesting findings, from ana-
lyzing more than 9 years worth of failure data from supercomputing
facilities, is that failures have a strong temporal locality. The proba-
bility of a failure is high soon after a failure has occurred (i.e., more
failures occur on the heels of a failure).

Based on our observation of the temporal locality in failures,
we propose two novel techniques, Lazy Checkpointing and Skip
Checkpointing, that place checkpoints by taking advantage of the
temporal locality in failures, instead of naively taking periodic
checkpoints.

The temporal locality in failures indicates that a significant frac-
tion of failures is likely to occur within a relatively shorter time-
period (compared to the MTBF of the system) after a failure strikes.
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ure data is publicly available [33]. Spider I was built using
48 SSUs, each one consisted of a DDN S2A9900 controller
couplet [4], with 280 1 TB SATA disks configured in 5 disk
enclosures. Each couplet was connected to 4 file system
servers. Spider I o↵ered an aggregate system performance
of 240 GB/s, and provided over 10 PB of RAID 6 formatted
capacity, using 13,440 SATA disks and 192 file system server-
s. It served more than 26,000 file system clients from several
clusters and the Jaguar supercomputer. Each Spider I DDN
couplet was composed of two singlets. Host-side interfaces
in each singlet was populated with two dual-port 4x DDR
IB HCAs. The back-end disks were connected via ten SAS
links on each singlet. For a SATA based system, these SAS
links connected to expander modules within each disk shelf.
The expanders then connected to SAS-to-SATA adapters on
each drive. All components had redundant paths. Each sin-
glet and disk tray had dual power-supplies where one power
supply was powered by the house power and the other by
the UPS. Figure 1 illustrates the internal architecture of a
Spider I DDN S2A9900 couplet.
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Figure 1: Spider I S2A 9900 architecture

3.2 Field-gathered Failure Data Analysis
In this section, we analyze the field gathered failure data

of di↵erent hardware components used in the Spider I file
system at OLCF, and provide an account of the key findings
learned through the process.

3.2.1 Vendor Provided Reliability Metrics
System vendors often provide AFR (annual failure rate)

or MTTF (mean time to failure) of each type of FRU (field
replaceable unit). As stated earlier, Spider I consists of 48
SSUs, and the AFRs of the FRUs are listed in Table 2.
Vendor provided reliability metrics can be used to derive a
coarse-grained estimation of a storage subsystem’s reliabili-
ty. As an example, one model that has been widely used to
estimate the data availability of disk redundancy groups is
continuous Markov chain, which has an underlying assump-
tion that the failure rates of disk drives are constant (time
independent) [3, 10, 20, 27]. With such a model, the vendor-
provided metrics, AFRs and MTTF, can be used to establish
the failure model of each disk drive, which assumes that the
time to failure of disk drives is an exponential distribution.

Unit Vendor Actual
Number IDs Cost ($) AFR AFR

Controller 2 15-16 10,000 4.64% 16.25%
House Power Supply
(Controller)

2 1-2 2,000 0.83% 4.38%

Disk Enclosure 5 27-31 15,000 0.23% 1.17%
House Power Supply
(Disk Enclosure)

5 3-7 2,000 0.08% 8.50%

UPS Power Supply 7 8-14 1,000 3.85% NA
I/O Module 10 17-26 1,500 0.38% 0.92%
Disk Expansion
Module (DEM)

40 32-71 500 0.23% 0.29%

Baseboard 20 72-91 800 0.23% NA
Disk Drive 280 92-371 100 0.88% 0.39%

Table 2: FRUs in one scalable storage unit

3.2.2 Field Failure Data
Besides the vendor-provided metrics, system administra-

tors typically maintain field-gathered failure and replace-
ment data. Such information is much closer to the reality
than vendor provided reliability metrics. In fact, by an-
alyzing the field-gathered failure data of storage systems,
several existing studies have shown that the failure rates of
disk drives and other hardware components can vary over
time [11, 22].

The failure and replacement data for Spider I was collected
from all of the 48 SSUs during its 5-year operational period.
The dataset contains timestamps when device replacement
was needed. We first count the number of failures of each
type of FRU during 5 years, and then calculate their actual
AFRs. The results are summarized in Table 2. Below is a
list of the key findings:

Finding 1. The actual annual failure rate (AFR) of Spi-
der I disks is only 0.39% – much smaller than what has been
reported in previous studies [26]. It is hard to generalize this
as the environment, testing conditions and vendors are quite
di↵erent. E�cient facilities support, e.g., better power and
cooling infrastructure, might be a factor here. However, it is
not possible to quantitatively establish a causal relationship
between operating conditions and disk drive failure rate.

Finding 2. Aggressive burn-out tests at the time of sys-
tem deployment help eliminate potential problematic or s-
lower disks early on, which improves the overall aggregate
parallel performance. It also keeps the disk AFR low by re-
moving potential problematic disks from the population.

On the point of stress testing and slow disk identification,
there are no community standards for this process. Our
method involved individually stressing each SSU, and iden-
tifying the slowest disk RAID groups. Then, we exercised
those groups separately, and collected latency statistics on
the disks individually. This process should be performed
during initial deployment, and repeated periodically to keep
a healthy and uniformly performing disk population. Our
records indicate that the AFR before the acceptance of the
Spider I system was much higher (2.2%). Our early testing
helped remove close to 200 slow or bad disks. This resulted
in a much lower AFR during production (0.39%).

Finding 3. Non-disk components of Spider I have higher
AFRs than vendor provided metrics.

While this comes as a surprise, it also suggests that future
studies should carefully model and account for the reliability
of non-disk components as they contribute heavily towards
the overall reliability of the system.

our path of exploration and proposed methods may find wider
applicability, and should be beneficial to the cluster computing
community at large. Also, it is expected that the amount of data
being generated from the scientific simulations will continue to
increase in the big data era. Therefore, we believe our proposed
strategy to improve the I/O performance of large-scale data-
intensive scientific applications is likely to become even more
important in the near future.

The contributions of this paper are three fold. First, we
empirically show that how a simple yet typical I/O use case
in a large-scale, layered file and storage system can lead to
I/O load and resource use imbalance. Second, we propose and
implement a topology-aware, balanced placement strategy to
address the load and resource use imbalance issues. Third, we
demonstrate, with both synthetic benchmarks and a real-world
scientific application, that this strategy can indeed mitigate the
problem and improve application I/O performance significantly
regardless of the layout of compute node allocation. It is the
latter point that takes this approach beyond Titan-specific en-
vironment and makes it generally applicable to other compute
and storage infrastructures as well.

The rest of paper is organized as follows. In Section II,
we provide a detailed description of the Titan and Spider II
infrastructure. Its complex I/O path and empirically observed
congestion points motivate the design of the end-to-end, bal-
anced placement strategy, which is elaborated in Section III.
In Section IV, we discuss our experimental setup, evaluation
strategy and testing results. In Section V, we present an
example of application integration, our experience and results.
Finally, Section VI summarizes the paper and discusses the
future work.

II. BACKGROUND AND RELATED WORK

Since we evaluate our proposed technique on the Titan
supercomputer and Spider II parallel file system, this section
aims at presenting relevant architecture details of Titan and
Spider II. Also, since the I/O traffic of compute clients will
traverse interconnect network in both directions (read and
write), the placement of I/O routers have a tremendous impact
on traffic pattern. The past and current research efforts on
interconnect routing congestion avoidance indirectly motivate
our proposed solution. Therefore, we will review these and
other resource balancing related works in the latter part of the
section.

Titan is a Cray XK7 system with 18,688 compute nodes,
710 TB of total system memory [10]. This high capability
compute machine is backed by a center-wide parallel file
system known as Spider II. Spider II is one of the world’s
fastest and largest POSIX complaint parallel file systems. It
is designed to serve write-heavy I/O workloads generated
by Titan compute clients and other OLCF resources. The
topology and architecture details of Spider II infrastructure
are illustrated in Figure 1 and described as follows:

On the back-end storage side, Spider II has 20,160 disks
organized in RAID 6 arrays. Each of these RAID arrays
act as a Lustre Object Storage Target (OST). An OST is
the target device where the Lustre parallel file system does
file I/O (read or write) at the object layer. These OSTs are
connected to Lustre Object Storage Servers (OSSes) over
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FIG. 1: INFRASTRUCTURE AND I/O PATH BETWEEN TITAN (CRAY XK-7)
AND ITS BACKEND STORAGE

direct InfiniBand FDR links; these OSSes currently run Lustre
parallel file system version 2.4.2. There are a total of 288
OSSes and each OSS has 7 OSTs (a total of 2,016 OSTS).
Spider II is configured and deployed as two independent and
non-overlapping file systems to increase reliability, availability,
and overall meta data performance. Each file system, therefore,
has 144 Lustre OSSes and 1,008 Lustre OSTs.

Each OSS is connected to a 36-port IB FDR Top Of the
Rack (TOR) switch. Each TOR switch is connected with a
total of 8 OSSes. Each switch also connects to two 108-
port aggregation switches. The aggregation switches provide
connectivity for the Lustre meta data and management servers.

On the front-end at the compute side, there are two different
types of nodes in Titan: compute and Lustre I/O router nodes.
Both types of nodes are part of the Gemini network [11] in
3D torus topology. Each node has a unique network ID (NID)
for addressing purposes. A total of 440 nodes on Titan are
configured as Lustre I/O routers, 432 of which are used for
routing Lustre file I/O traffic between Titan and Spider and 8
are used for routing Lustre meta data I/O. Titan I/O routers are
connected to SION TOR switches via InfiniBand FDR links.
Note that the SION TOR switches enable these I/O routers to
reach to the back-end storage system (OSSes and OSTs).

In order to provide connectivity over different networks
and communicate between file system clients and servers over
these networks, Lustre provides a network abstraction layer
called LNET (Lustre Networking) [12].

Lustre can route traffic between multiple networks of the
same or different types. This functionality is provided by
Lustre I/O routers. By default, Lustre uses a round-robin
algorithm to pick routers. The first alive router on top of the list
will be picked to route the message and then will be placed
at the end of the list for the next round to provide a load
balance among multiple routers. Each SION TOR switch is
assigned an LNET route. Our proposed technique focuses on
balancing the load on resources from the Luster I/O routers
up to the OSTs. The algorithm improves I/O performance by

2:
3: lnet_freq  0, rtr_freq  0
4: oss_freq  0, ost_freq  0
5: random_offset  randomly selected reachable lnets
6: for all NIDs in the input NID list do
7: lnet  random_offset
8: for all reachable OSTs do
9: cost  MAX

10: oss  ost2oss() . map OST to OSS
11: mycost  placement_cost(
12: lnet_freq, rtr_freq ,oss_freq, ost_freq)
13: if mycost < cost then
14: mycost  cost
15: picked_ost  ost
16: picked_oss  oss
17: end if
18: end for
19: record NID and the selected OST
20: increment lnet_freq, rtr_freq, oss_freq, ost_freq
21: end for
22: end procedure
23:

Next, we discuss the key design issues and choices of
our proposed algorithm. First, how do we decide the weight
factors? Generally speaking, these tunable parameters are site
dependent, which require a careful analysis and systematic
evaluation to identify the possible congestion point. We take
advantage of our decade-long experience with these file sys-
tems to assess which components are utilized in a relatively
more imbalanced fashion. As a generic observation, load across
OSTs are more imbalanced compared to other components.
It led us to set the value of w4 higher and evenly split the
rest as: w1 = 0.2, w2 = 0.2, w3 = 0.2, and w4 = 0.4 in
our prototypes. We do not claim that these weight factors are
optimal. However, Figure 2 (d), (e) and (f) show that these
weight factors resolve the load imbalance issue. Our evalu-
ation results show that these heuristic settings can improve
performance significantly. Further fine-tuning of these weight
factors may remove a few outliers visible in Figure 2 (d), (e)
and (f), however we believe these outliers may not result in
additional significant performance gains than what our current
weight factor based design already provides.

Second, what is the overhead of this strategy? Our scheme
incurs modest computational overhead, because the algorithm
is invoked only once before each I/O phase. The internal data
structures ensure that storage overhead associated with each
allocation requests are kept to minimal and resource can be
freed as soon as possible.

Third, will invocations of the same algorithm from different
applications create additional source of contention? We are
careful in ensuring that it doesn’t create contention among
applications. We instantiate the LNET selection with a ran-
dom offset ensuring that different application have different
starting points and hence, less likely to contend for the same
paths and OSTs. We note that our proposed algorithm would
be complimentary to system-wide contention-aware resource
allocation scheme, as it doesn’t create any new artificial source
of contention.

Finally, under what settings will this algorithm not perform
well? Our algorithm is sensitive to the size of the possible
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resources (for example, reachable OSTs) and routing paths.
When number of I/O processes are small and tightly packed
in close proximity, they are likely to have access to a set of
less optimal OSTs and hence, corresponding routes as well.
In such cases, our algorithm has relatively less opportunity to
perform load balancing. This is confirmed by our experiments
to be discussed in details in the next section, where we
achieve relatively modest performance improvements at low
node counts.

In the next section, we will discuss the experimental setup
and evaluation results using this placement strategy.

IV. EXPERIMENTAL SETUP AND EVALUATION

In this section, we first describe the experimental setup,
then we present and analyze our evaluation results both from
a synthetic benchmarking tool and real scientific application.

We rely on synthetic benchmarking for assessing the
strength and weakness of our approach because (1) it is not
always possible to test with a varied range of parameters and
perform sensitivity studies with real application codes; (2)
compute allocation time is very expensive on Titan supercom-
puter: it is calculated that the operational cost is about $1
per node per hour. Since Titan has 18,688 compute nodes, it
amounts to an estimated $18,688 per hour. Therefore, testing
with a synthetic application that only stresses I/O provides
significant cost savings.

Our synthetic benchmarking tool, referred to as Placement
I/O (PIO), is specifically designed to do comparative analysis.
We also discuss our experience of application integration by
instrumenting a large scale scientific application, S3D [33], a
high-fidelity turbulent reacting flow solver to demonstrate the
effectiveness our proposed scheme on Titan supercomputer.

A. Experimental Setup

We perform all our experiments on Titan supercomputer.
There are two major issues that we address to demonstrate that
our results are representative.

First, we run all our experiments in a busy production
environment. That is, we didn’t take advantage of maintenance
quiet period to perform our experiments. We ran all our
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Figure 15: Temperature variation before each DPR error.

can notice the difference in shapes across the three histograms.
The random nodes, shown in Fig. 15(e) have significant prob-
ability mass that is below 40 degrees comparing to the DPR
offenders and non-DPR offenders within the same cage. This
mass may not be as pronounced in the 60 min observations,
but it is still present across all histograms in the right column
of Fig. 15. Overall, the six histograms shown in this figure
allow the reader to appreciate how the mere differences in stan-
dard deviation that are shown in Table 1 indeed correspond to
significantly different temperature frequencies.

To better compare these histograms quantitatively, we com-
pare them as CDFs in Fig. 16. Fig. 16(a) shows all CDFs for
the 5 minutes case and Fig. 16(b) shows all CDFs for the 60
minutes case. Across both graphs, we see that the random
nodes (non-DPR) have significantly much lower temperature
than those of DPR offenders. For example, in the 5-minute
window, we see that 50% of random nodes have temperature
less than 35�C, but only 25% of those within the DPR case
reach this mark. This trend is consistent across most temper-
atures, nearly 20% of nodes that are randomly selected are
consistently cooler than those in the DPR categories (indi-
vidual and cage). Further we see that even within the same
temperature percentile level, there is a difference in temper-
atures ranging between three to ten degrees. For the longer

Table 2: Statistics for Temperature (DBE)

60min before
(avg / stddev)

15min before
(avg / stddev)

5min before
(avg / stddev)

DBE 32.64 / 5.97 32.02 / 5.54 33.30 / 6.18
Non-DBE 32.14 / 6.24 32.23 / 6.07 33.14 / 6.82
(same cage)
Non-DBE 32.89 / 8.54 32.79 / 7.96 33.39 / 7.89
(random)

(a) 5 min before (b) 60 min before

Figure 16: CDF of temperature variation before DPR errors.

time window of 60 minutes, these differences are still there
but not as large.

In summary, we have seen that while the temperatures of
DPR offenders may be similar to nodes within the same cage,
but they are consistently hotter than randomly selected nodes
in the machine. This further supports the observation that
high temperature may precipitate the occurrence of a DPR,
especially if it remains consistently high (i.e., there are very
limited temperature variations).

We conduct similar analysis for DBE occurrences, results
are shown in Table 2. We observe that there is no significant
difference in temperature of DBE offender node, other nodes
in the same cage as the DBE errors, and randomly selected
nodes. Therefore, we can not conclude the effect of temper-
ature on DBEs as per this analysis. However, we found that
DBEs occur more frequently in the upper cages than the lower
cages (similar to previous work [34]). This indicates some as-
sociation with temperature, since the upper cages are typically
hotter than the lower cages. It should be noted that, this in
itself can not lead to well-formed conclusion due the varying
temperature of nodes over time. Recall that single bit errors
are collected at start and end of each batch job and hence, we
do not have the exact timestamp of occurrence. This limits
our capability to perform fine-grained analysis on the effect of
temperature on single bit errors.

Observation 9 Temperature may have an impact on GPU soft
errors (DPR and DBE), but this conclusion is highly dependent
on the choice of nodes to compare against. Our analysis
clearly shows that a comprehensive methodology should be
followed and described when making such assessments. We
found that the higher temperature may be correlated with DPR
and DBE errors, and the higher variability in temperature does
not necessarily lead to increased probability for DPR errors.
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!
Figure 2: LANSCE, ISIS, and TRIUMF neutrons spectrum: plot-

ted against neutrons spectrum at the sea level multiplied
by 107 and 108 [43].

Therefore, in our discussions we discard thermal neutrons
contribution and make a direct comparison only among exper-
iments performed in the same facility and in the same time
slot.

The neutron flux was approximately 1⇥106n/(cm2 ⇥ s) in
LANSCE and 4⇥104n/(cm2 ⇥ s) in ISIS for energies above
10 MeV. The neutron fluxes used are higher than the neutron
flux at sea level [20], but we have carefully designed the ex-
periments to ensure that probability of more than one neutron
generating a failure in a single code execution remains prac-
tically negligible. The observed error rates were lower than
10�2 errors/execution. Since a much lower neutron flux may
hit a GPU in a realistic environment, it is highly likely to
not have more than one corruption during one single execu-
tion. We can, therefore, scale the experimental data in the
natural radioactive environment without introducing artificial
behaviors.

The GPU hardware setup includes connecting the GPU to a
host computer through a PCIe extender (Fig. 3). The role of
the host computer is to initialize the test and gather the results
from the GPU. A software and a hardware watchdog were
included in the setup. The software watchdog monitors a time-
stamp written by the application running on the GPU. If the
time-stamp is not updated in ten seconds the GPU application
is killed and launched again. Such a watchdog is required to
detect and manage radiation-induced program crashes. The
hardware watchdog is an Ethernet controlled switch that per-
forms a power cycle of the host computer if the host computer
itself does not acknowledge any ping requests in ten minutes.
The hardware watchdog is necessary as radiation can corrupt
the PCIe controller on the GPU board as well, possibly causing
the host computer to hang. Irradiation was performed at room
temperature with normal incidence and nominal voltages.

Figure 3: Radiation test setup inside the ICE House II, Los
Alamos Neutron Science Center (LANSC), LANL. A
similar setup was used at ISIS, Didcot, UK.

4. Understanding and Quantifying GPU Errors
on the Titan Supercomputer

In this section, we present a detailed characterization of GPU
failures, share interesting findings and implications for GPU
architects and system operators.
Temporal characteristics of GPU failures

Fig. 4 shows the monthly-frequency of different types of
GPU failures for the Titan supercomputer. First, we observe
that the frequency of GPU related failure events is fairly low
(typically occurring once in two days on an average). This is a
significant result in the context of a such a large-scale system
where more than two failures per day are likely to occur on an
average, estimated using vendor-specified MTBF for the GPU
card [2].

Second, we note that Off the bus, ECC page retirement
errors and DBE failures are more dominant than other types of
failures. We also point out that Off the bus failures were domi-
nant only before the GPU production run (December 2013).
A system integration issue with GPU cards was identified and
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Figure 4: Monthly frequency of different types of GPU fail-
ures. Some errors (Table 1) that lead to program crash
were observed to have zero error counts. ECC page retire-
ment related errors were available only for the production
run. GPU off the bus error is always followed by the micro-
controller halt error after the recent driver upgrade.
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(a) (b)

Fig. 3: Distribution of each failure-type across rows (a) and columns (b) of cabinets, normalized by the frequency of each
failure-type instead of the total number of failures to understand the characteristic of each failure-type better.
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Fig. 2: Histogram of failures across 200 cabinets (a), and across
600 cages (b), and heatmap showing the spatial distribution of
all failures across 200 cabinets physically organized as 25 rows
and 8 columns (c).

Next, we plot the spatial distribution of failure in the row-
column space of the cabinets. Fig. 2(c) shows the distribution
of failures across the cabinets based on the physical location
of the cabinet. From the figure, we can again observe that
all cabinets are not equally likely to be hit by a failure.
However, it is very challenging to accurately reason about
this non-uniform distribution since multiple factors such as
environmental, physical factors may be affecting this spatial
distribution simultaneously. We start our further discussion
by investigating how different failure-types are spatially dis-
tributed in the space.

Observation 1. The spatial distribution of failures is not
uniform. Due to an ensemble of physical characteristics of
the system, some locations may be more prone to failures than
others.

B. Spatial Distribution of Failure-types

One may question the observation from Fig. 2(c) arguing
that a few dominant failures may happen more frequently
in certain cabinets and skew the distribution of failures in

space. Therefore, in Fig. 3, we show the distribution of failures
across rows and columns for different failure-types. It has
been normalized by the number of failures of “that” type
instead of the total number of failures. This normalization
brings out the property of each failure-type better instead of
being affected by the dominant failures. We observe that nearly
all failure-types are unequally distributed in space as well.
We have attempted to correlate this unequal distribution with
power and cooling infrastructure and other facility parameters,
but there is not enough strong evidence to suggest why a
particular type of failure was distributed in a skewed manner.
However, this finding has important implications for future
fault-tolerance research. Our finding implies that large-scale
jobs may have significantly different probability of getting
interrupted by a system failure event depending on their
node allocation. System-administrators can use this kind of
information to allocate mission-critical jobs to relatively more
reliable cabinets.

Next, we investigate what happens within a cabinet? Fig. 4
shows the distribution of failures among different cage levels
inside a cabinet, blades in a cage, and nodes within a blade.
While there are no clear visible trends at the blade- and node-
level, we observe that the likelihood of failures happening in
the upper cages (cage 2) is higher. This is true for almost
all failure-types, however not for all (e.g., kernel panic).
Therefore, system administrators can also use this behavior to
prioritize mission-critical production jobs towards lower levels
of cages (cage 0 and cage 1).

Observation 2. Most of the failure-types are not equally
distributed in space. This information can be used to better
schedule a mission-critical job or to estimate the probability
of job interruption depending on job’s node allocation layout.

C. Understanding Re-occurrence Behavior of Different
Failure-types

In this section, we analyze if one failure-type is likely to
occur soon after a another failure-type. First, we understand
how this happens within the grace-period. Fig. 5(a) shows
the number of occurrences of a failure-type following another
failure-type within a 5 second grace-period. We obtained
similar results for a 300 second grace-period that we have
applied (not shown here due to space constraints). We observe
that several failure-types are reported multiple times within
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(a) (b)

Figure 5: GPU resource distribution for the SBE offender
nodes (excluding top two SBE offenders): GPU core
hours (a), and GPU memory utilization (b).

therefore, higher GPU resource utilization alone may not be
considered as the “cause”. Fig. 5 shows the normalized GPU
core hours and memory utilization for all SBE offender nodes.
The normalization is performed using the average for all SBE
offender nodes except the top two nodes (which are considered
outliers, as their SBEs occur in a single day only). We observe
that the nodes with higher SBE count do not necessarily use
higher GPU core hours or run workloads with higher memory
utilization.

While GPU resource utilization does not seem to be di-
rectly correlated with the SBE occurrence frequency on the
GPU nodes, we suspect that the variance in GPU resource uti-
lization may be correlated to higher SBE occurrences. More
precisely, we want to test the hypothesis that days with higher
variance in GPU utilization experience higher single bit er-
rors. Fig. 6 shows the top 50 days which encountered most
SBEs (in increasing order) and the corresponding variance in
GPU resource utilization on that day. We note that Fig. 6(a)
and (b) indicate that the couple of days with the highest SBE
count may also experience the highest variance in their GPU
resource utilization. However, a more closer look at top 4 to 50
days (Fig. 6(c) and (d)) shows that variance in GPU resource
utilization does not imply higher daily SBEs. Based on this
finding, we point out that GPU resilience simulation and mod-
eling frameworks do not necessarily need to vary the soft-error
rate based on the compute load or variance in the load. This
will simplify the design of such tools without compromising
the accuracy of the study.

Observation 3 We found that GPU resource utilization and
variance in the GPU resource utilization do not seem to be
significantly correlated with the SBE occurrences. Higher
GPU resource utilization or its variance do not necessarily
result in a higher SBE count.

We learned that the GPU resource utilization is not
highly correlated with the SBE frequency on SBE offender
nodes. Here, we investigate the relationship between specific
users/applications and SBE counts. In other words, is a certain
fraction of users/applications experiencing more single bit er-
rors than others? If so, what are the respective GPU resource
utilization levels?

(a) top 50 days (b) top 50 days

(c) top 4 to 50 days (d) top 4 to 50 days

Figure 6: Variance in the GPU resource utilization and daily
SBE count: GPU core hours for top 50 days (a),
for top 50 days excluding the top 3 days (b), GPU
memory utilization for top 50 days (c), and for top 50
days excluding the top 3 days (d). (Days are sorted
in increasing order of SBE count.)

(a) (b)

Figure 7: GPU core-hours for users (a), and applications (b)
experiencing SBEs.

Fig. 7(a) shows the SBE count of different users versus
their respective GPU core hours. Both SBE count and GPU
core hours have been normalized by their respective average
values. We also point out that only users that encountered at
least one single bit error are included in the plot. We found
that the correlation between GPU core hours and SBE count
is significant when studied at the user-level. The Pearson
coefficient is 0.59 with p-value < 0.05 while the Spearman
coefficient is 0.89 with p-value < 0.05. This indicates a strong
non-linear correlation. We did similar analysis between the
SBE count for users versus their respective GPU memory
utilization. We found similar trends in the results (not shown
here due to lack of space).

Fig. 7(b) shows that SBE count for applications versus its
respective GPU core hours. Only the applications affected by
SBEs are included in the plot. Similar to our previous analysis
for users, we found strong non-linear correlation in this case as
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Figure 16: Maximum memory consumption and sin-
gle bit errors: all jobs (a), and excluding
jobs that used any of the 10 GPU cards
experiencing the most single bit errors
(b). Batch jobs are sorted based on the total
memory consumption. Respective curves have
been normalized to the average of total memo-
ry consumption and SBE count.

making it statistically meaningful to investigate the correla-
tion. For this analysis, we used recently deployed method of
collecting SBE counts on a per batch job basis for the peri-
od of over a month, and the correlation was studied between
SBEs and GPU resource utilization. We note that the SBE
counts can not be collected on a per aprun basis instead
it is collected on a job basis since the nvidia-smi output is
run before and after the job script, irrespective of number
of apruns within the job script.

Fig. 16, 17, 18, and 19 have been sorted by maximum
memory consumption, total memory consumption, number
of nodes, and the GPU core hours, respectively. We sorted
batch jobs in this order to better visualize the correlation.
We also note that the values have been normalized to ave-
rage value of the respective metrics because the ranges are
quite large, making it hard to visualize how does the SBE
count change with the increase in a particular resource utili-
zation. The first case in each plot considers all the GPU jobs.
However, as we noted earlier, some GPU nodes may experi-
ence significantly more SBEs than other nodes, and hence,
can potentially skew our analysis. Therefore, our second case
excludes jobs that used any of of top 10 SBE o↵ender nodes.
We found that removing top 50 o↵ending nodes showed si-
milar results as removing top 10 SBE o↵enders (but results
not shown due to space restrictions).

From Fig. 16 and 17, we observed that maximum and to-
tal memory consumption had very little correlation with the
SBE count (both the Spearman and Pearson coe�cient were
less than 0.50 with p-value <0.05). We explain this observa-
tion by looking at the memory structures where these SBEs
are happening. Most of the single bit errors happen in the L2
cache despite its much smaller size than the device memory.
This could help us explain why SBE count may not always
exhibit strong correlation with the memory utilization.

Figure 17: Total memory consumption and single
bit errors: all jobs (a), and excluding jobs
that used any of the 10 GPU cards expe-
riencing the most SBEs (b).

Observation 11. The single bit errors show very weak
correlation with the GPU memory utilization. This is cau-
sed by the SBEs occurring predominately in on-chip memory
structures. However, current GPU activity accounting tools
do not provide cache and register file level activity tracking
to investigate this issue in more detail.

SBE count shows good correlation with the number of
nodes and GPU core hours for the case where all jobs are
considered (the Spearman coe�cient is 0.57 and 0.70, re-
spectively). We note that the Pearson coe�cient was still
low because the correlation may not be linear in nature and
hence, is better captured by the Spearman correlation analy-
sis. SBE occurrences tend be more strongly correlated with
GPU core activity than memory utilization. Interestingly,
removing the jobs that used any of the top 10 o↵enders
weakens the correlation for both number of nodes and GPU
core hours (reducing it to below 0.50 for the Spearman co-
e�cient).

Observation 12. Based on our experience, statistically
establishing a correlation between GPU resource utilization
and SBE count is not straight forward. In fact, our results in-
dicate that higher core utilization does not necessarily lead to
increased SBE occurrences. More fine grained activity coun-
ters, such GPU SM level activity, will help us establish such
correlation better and could be used for other purposes inclu-
ding code optimization.

We also investigated if SBE occurrence has sensitivity to-
ward specific user-code. Ideally, this can be investigated if
we have access to full information about the binaries that
are being run, how the code characteristics change across in-
put types, di↵erent implementations of the same algorithm,
etc. However, many applications that are run on Titan may
be mission critical and application-level information may be
sensitive, so it is not feasible to perform a rigorous analysis
at the whole system level. But, we have used userID as a
proxy for the kind of application they represent in order to
perform a first-order analysis. Fig. 20(left) shows that typi-
cally users utilizing more GPU core hours tend to experience
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.anFS/alice/, and the associated POSIX ACLs protect user
files.

3.4 Provenance
AnalyzeThis tracks the lineage of the data produced as a

result of a workflow execution at very minimal cost. This al-
lows the user to utilize the intermediate data for future anal-
ysis. We have implemented provenance support on top of the
distributed database infrastructure (Figure 3) between the
storage server (workflow table, anFS wf) and AFEs (Dataset
task collection membership table, tcid oid). Recall that
anFS wf stores information about the task and the AFE on
which the task is executed; tcid oid stores the task collection
to data object mapping and will also need to be maintained
on the storage server. Upon receiving a provenance query
regarding a dataset, AnalyzeThis searches the anFS dirent
table to get the anFS inode of the file, which is used to get
the object id. The object id is then used to retrieve the task
collection id from the tcid oid table. The task collection id
is used to obtain the AFE id from the anFS wf table. Alter-
natively, if tcid oid is not maintained on the storage server
as well, we can broadcast to the AFEs to determine the task
collection id for a data object id. Further analysis of the lin-
eage is performed on that AFE. Using the task collection id
and the attribute page we get the task collection attribute
page number. Using the predefined attribute o↵set all the
information regarding the task is fetched. The task prove-
nance from multiple AFEs is merged with similar job-level
information that is maintained at the storage server in the
anFS wf table.

4. EVALUATION

4.1 Experimental Setup
Testbed: Our emulation testbed (Figure 4) is composed

of the following: (1) client desktop computer that submits
analysis workflows, (2) storage server within the AnalyzeThis
appliance, and (3) the networked machines that emulate the
AFEs (four AFEs are connected to the storage server). For
the desktop computer and the storage server, we used a 1.8
GHz Intel Xeon E5-2603 processor. We emulated the AFEs
using Atom machines with RAM disks, to mimic the flash
controller and the internal flash chips with high I/O band-
width to the controller. The Atom-based AFEs use a single
1.8 GHz Atom processor as the controller, a 3 GB RAM disk
as the flash chip, and a 1 Gbps Ethernet connection to the
storage server within the AnalyzeThis appliance. All servers
run the Linux kernel 2.6.32-279. anFS o↵ers a read and write
bandwidth of 120 MB/s and 80 MB/s, respectively.

Software: AnalyzeThis has been implemented using 10 K
lines of C code. We extended the OSD iSCSI target emu-
lator from the open-osd project [33], for the AFE target.
The task executions in an AFE are serialized by spawning
a dedicated thread, which mimics dedicating a device con-
troller for active processing. For the AFE-OSD driver in the
storage server, we extended the OSD initiator driver in the
Linux kernel. We also extended exoFS [12] to synchronize
the OSD object id space with the userspace anFS. anFS has
been implemented using FUSE [13], and it keeps track of
metadata using SQLite [48].

Scientific Workflows: We used several real-world com-
plex workflows. We used Montage [27], Brain Atlas [28],
Sipros [54], and Grep [14] workflows. The DAG representa-
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Figure 4: AnalyzeThis testbed.
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Figure 5: The DAGs representing the workflows.

tions and the details of the workflows are shown in Figure 5
and Table 1.
The Montage workflow [27] creates a mosaic with 10 as-

tronomy images. It uses 8 analysis kernels, and is composed
of 36 tasks, several of which can be parallelized to run on
the AFEs. The Brain workflow [28] creates population-based
brain atlases from the fMRI Data Center’s archive of high
resolution anatomical data, and is part of the first prove-
nance challenge [28] used in our provenance evaluation. The
Sipros workflow runs DNA search algorithms with database
files to identify and quantify proteins and their variants from
various community proteomics studies. It consists of 12
analysis tasks, and uses three analysis kernels. The Grep
workflow counts the occurrences of ANSI C keywords in the
Linux source files.

Input Intermediate Output Total Object

(MB) (#)

Montage 51 222 153 426 113

Brain 70 155 20 245 35

Sipros 84 87 1 172 45

Grep 463 363 1 827 13

Table 1: Workflow input, output and intermediate data size.
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Figure 2: AnalyzeThis architecture and components.

the storage server maintains in a lightweight database. The
scheduler dispatches the mini DAGs for execution on the
AFEs; AFEs form the bottom-most layer of our system,
and are capable of running analysis kernels on the device
controllers. We use an analysis object abstraction, which en-
capsulates all necessary components of an task, including
analysis kernels, input and output datasets, and the lineage
information of all the objects therein. The analysis kernels
for a given workflow is assumed to be stored as a platform-
dependent binary executable object (.so format), compiled
for specific devices as needed, which can run on the AFEs.

3.1 Analysis Encapsulation
We introduce analysis awareness in the Active Flash ar-

ray by building on our prior work on Active Flash that has
demonstrated how to run an analysis kernel on the flash
controller [5, 51]. Our goal here is to study how to overlay
an analysis object abstraction atop the Active Flash device,
both of which together form the AFE. The construction of an
AFE involves interactions with the flash hardware to expose
features that higher-level layers can exploit, communication
protocol with the storage server and flash device, and the
necessary infrastructure for analysis object semantics. An
array of AFEs serve as building blocks for AnalyzeThis.

The first step to this end is to devise a richer construct
than just files. Data formats, e.g., HDF [45, 10, 34, 53]
NetCDF [30, 21], and NeXus [31], o↵er many desirable fea-
tures such as access needs (parallel I/O, random I/O, partial
I/O, etc.), portability, processing, e�cient storage and self-
describing behavior. However, we also need a way to tie the
datasets with the analysis lifecycle in order to support fu-
ture data-intensive analysis. To address this, we extend the

concept of a basic data storage unit from traditional file(s)
to an analysis object abstraction that includes a file(s) plus
a sequence of analyses that operate on them plus the lineage
of how the file(s) were derived. Such an abstraction can be
created at a data collection-level, which may contain thou-
sands of files, e.g., climate community. The analysis data
abstraction would at least have either the analysis sequence
or the lineage of analysis tools (used to create the data) as-
sociated with the dataset during its lifetime on AnalyzeThis.
The elegance of integrating data and operations is that one
can even use this feature to record data management ac-
tivities as part of the dataset and not just analyses. For
example, we could potentially annotate the dataset with a
lifetime attribute that tells AnalyzeThis which datasets (fi-
nal or intermediate data of analysis) to retain and for how
long. The analysis object abstraction transforms the dataset
into an encapsulation that is more than just a pointer to a
byte stream; it is now an entity that lends itself to analysis.

3.1.1 Extending OSD Implementation for AFE
We realize the analysis object abstraction using the object

storage device (OSD) protocol. The OSD protocol provides
a foundation to build on, by supporting storage server to
AFE communication and by enabling an object container-
based view of the underlying storage. However, it does not
support analysis-awareness specifically. We use an open
source implementation of the OSD T10 standard, Linux
open-osd target [33], and extend it further with new fea-
tures to implement the AFEs. We refer to our version of
the OSD implementation as “AFE-OSD” (Figure 2(a)). Our
extensions are as follows: (i)Mini Workflow supports the ex-
ecution of entire branches of an analysis workflow that are
handed down by the higher-level Workflow Scheduler on the
storage server; (ii) Task Tracker tracks the status of running
tasks on the AFE; (iii) AFE Status checks the internal sta-
tus of the AFEs (e.g., load on the controller, capacity, wear-
out), and makes them available to the higher-level Workflow
Scheduler on the storage server to enable informed schedul-
ing decisions; (iv) Lineage Container captures the lineage
of the executed tasks; and (v) Lightweight Database Infras-
tructure supports the above components by cataloging the
necessary information and their associations.
Mini Workflow Engine: The AFE-OSD initiator on

the storage server submits the mini DAG to the AFE-OSD
target. The mini DAG represents a self-contained branch
of the workflow that can be processed on an AFE indepen-
dently. Each mini DAG is composed of a set of tasks. A
task is represented by an analysis kernel, and a series of in-
puts and outputs. The storage server dispatches the mini
DAGs to the AFEs using a series of ANALYZE_THIS exe-
cution commands, with metadata on the tasks. To handle
the tasks on the AFEs, we have implemented a new anal-
ysis task collection primitive in the AFE-OSD, which is an
encapsulation to integrally tie together the analysis kernel,
its inputs and outputs (Task Collection and the Task Col-
lection Attribute Page are represented in the bottom half of
Figure 3). Once the AFE receives the execution command,
it will create an analysis task collection, and insert the task
into a FIFO task queue that it maintains internally. As we
noted earlier, inputs and outputs can comprise of thousands
of files. To capture this notion, we create a linked collection
encapsulation for input and output datasets (using an exist-
ing Linked collection primitive), which denotes that a set of
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we can construct a statistical basis for the number of nodes
that must be sampled to produce a given confidence in the
final result. This assumption is unlikely to be met in the
general case, where computational load may be distributed
unevenly between nodes. However, for the case of balanced
workloads as in these benchmarks, we find that the assump-
tion of a normal distribution is appropriate. We there-
fore proceed upon the assumption of approximate normality,
with the caveat that this methodology will not be appropri-
ate in scenarios where the distribution of per-node power
consumption contains many outliers or is heavily skewed.
Based on our sample data, we provide a formula for the

necessary number of nodes in a sample in order to obtain a
selected level of accuracy. Consider a supercomputer with N
nodes with a true per-node mean power consumption of µ.
Suppose we select a subset of n nodes at random, measuring
time-averaged power consumption on each of these n nodes.
Denoting these measurements by X1, . . . , Xn, a reasonable
estimate of the true mean µ over all nodes is the mean of the
measurements of the sub-sample, or µ̂ = 1

n

Pn
i=1 Xi. From

this sample, we will be able to make a statement that with
(1�↵)⇥100% certainty, the di↵erence between µ̂ and µ is at
most � ·µ. What values of ↵ and � are “reasonable” depends
a great deal on perspective, but a common baseline is to use
confidence level (1�↵) = 95%, and accuracy � = 1%, which
would allow a statement with 95% certainty that an estimate
of the per-node power consumption is o↵ by no more than
1%.
So long as the per-node power usages are approximately

normally distributed and n is small relative to N , a given
confidence interval for the mean can be calculated based on
�̂, the sample standard deviation, and tn�1,1�↵/2, or the
1� ↵/2 quantile from a t distribution with n� 1 degrees of
freedom:

CI = µ̂±
tn�1,1�↵/2 · �̂p

n
, (1)

For large values of n (e.g. n � 20), we can approxi-
mate quantiles from a tn�1 distribution with quantiles from
a standard normal distribution, where z1�↵/2 is the 1�↵/2
quantile from a standard normal distribution. So for large
n an approximate confidence interval is given by:

CI ⇡ µ̂±
z1�↵/2 · �̂p

n
, (2)

Translated into a restriction on sample size, we want to
choose n so that the confidence interval half-width is no
more than � ·µ, where µ is approximated with the estimated
sample mean µ̂.

z1�↵/2 · �̂p
n

 � · µ. (3)

Solving for n then yields the general formula:

n �
✓
z1�↵/2

�
· �̂
µ̂

◆2

. (4)

This can be further refined to reduce the requirement that
the sample size n be small relative to the total number of
nodes N . In this case we can introduce a finite population
correction into the initial formula for the confidence interval.
Carrying this finite population correction through the same
logic yields a two-step procedure for providing a sample size
recommendation:
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Figure 2: Histograms of whole-node power under load across systems
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Figure 6. How the fraction of di�erence in inputs a�ect run time
for 64K map tasks (a) vs. for 256K tasks (b).
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Figure 7. The e�ect of the number of MapReuse threads on
performance for P/D=1 (a) and for P/D=1000 (b).

64K to 256K. The figure does not show any noticeable
change in performance compared to the case of 64K map
tasks.

Figure 7(a) plots the execution time for P/D ratio of
1, normalized to the base IMMR system running with 8
threads. For small fractions of input di�erence (e.g., 20%
di�erence), MapReuse with running with one thread out-
performs IMMR with 8 threads. This is substantial im-
provement in performance and most importantly, power con-
sumption. The maximum fractions of input di�erence where
MapReuse lose its performance advantage are quite high:
35%, 50%, 70%, and 99%, for 1-thread, 2-thread, 4-thread,
and 8-thread execution, respectively. However, for a higher
P/D ratio (Figure 7(b)), MapReuse’s performance improve-
ment significantly smaller because the � engine overheads
are larger than the saving from computation reuse.

While not shown in figures, we repeated the experi-
ments for the case when keys are not uniformly distributed
(skewed), and obtain similar observations.

5.3 Experimental Results
This section presents results from experiments on real

platforms. We use hardware counters to break the execu-
tion time of MapReuse into three components: 1) MapReuse
overheads, 2) map time, and 3) reduce time. We vary the
fraction of input di�erences by replacing records in the orig-
inal input randomly with new input records, while at the
same time preserving the P/D ratio of the original input.
Preserving the P/D ratio is a crucial step, because IMMR
performance is highly dependent on the P/D ratio of the
input, as the previous section has shown.

Figure 8 shows the execution time for di�erent applica-
tions as a�ected by di�erent fractions of input di�erence
(f=5%, 15%, and 25%), normalized to the base case of
single-threaded execution of the IMMR system. The fig-
ure shows that as expected, a higher fraction of input dif-
ferences leads to a smaller performance gain. One inter-
esting observation is the significant variation in how much
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Figure 8. Normalized execution time as a�ected by various fraction
of changes to the original input.

MapReuse improves performance across applications. For
example, while Freq. Count (B) and Filter show more than
80% reduction in execution time for f = 25%, Freq. Count
(A) shows only 40% reduction. What explains the varia-
tion? Our analytical model in the previous section shows
that the benefit of MapReuse depends on the P/D ratio.
In Freq. Count (A), there is only one key because all input
records are identical, hence the P/D ratio is the highest pos-
sible. In Freq. Count (B), each input record has a unique
key, hence the P/D ratio equals one, the lowest possible.
Freq. Count (C) lies between Freq. Count (A) and Freq.
Count (B). Freq. Count (A) and (B) are interesting be-
cause they bound the best and worst case of P/D ratio. We
can see in the figure that MapReuse performance improve-
ment is the highest in Freq. Count (B). This is because
key searching and insertion are high when there are a lot
of unique keys, hence the benefit from computation reuse is
high. In contrast, when there are very few keys, key search-
ing and insertion are already cheap, hence the benefit from
computation reuse is lower.

Finally, the figure shows that the reduce phase (where
merging occurs) only takes small portions of MapReuse exe-
cution time. The portions grow larger with larger f because
of increasing number of unmatched tasks. This is in line
with what our analytical model suggests (Section 5.2).

Next, we investigate the e�ect of using di�erent number of
threads in MapReuse. Figure 9 shows MapReuse speedups
with various number of threads over base IMMR running
with eight threads. The figure shows that MapReuse’s
speedups are significant for most benchmarks, and can be
as high as 50◊ for Freq. Count (B). Such a speedup is
very significant considering that it would require hundreds of
threads to achieve the same magnitude of speedup through
parallelism alone. In most cases, however, the speedups are
roughly several times compared to IMMR. The harmonic
mean of speedup ratios of MapReuse over IMMR running
with eight threads are 1.3◊, 1.7◊, 2.0◊, and 2.2◊, on 1, 2,
4, 8 threads, respectively, assuming the new input di�ers
by 5% from the original input. Even when the new input
di�ers by 25%, MapReuse speeds up IMMR by 1.3◊ on 8
threads. MapReuse does not achieve a linear speedup as
the number of threads is increased because not all its com-
putation is data parallel. MapReuse shows slowdown for
Freq. Count (A) vs. IMMR running with 8 threads. This
is because IMMR’s performance improves with thread par-
allelism, whereas MapReuse’s � engine computation is se-
quential, so running with more threads does not reduce the
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Fig. 6: Experimental results: (a) Ubora delayed unsampled queries by 7% on average. Sampled queries were slowed by
10% on average. (b) Profiling sampling and memoization options maximizes throughput. (c) Timeout settings have complex,
application-specific affects on answer quality.

below 10% on 4 of 6 workloads for sampled queries.
OpenEphyra and LC.all incur the largest overhead be-
cause just-in-time context interposes on many inter-
component interactions due to cluster size. For such
workloads, OS-level context tracking would improve
response time for sampled queries.
Impact of Profiling: Figure 6(B) studies our approach to
determine sampling rate and front-end components (i.e.,
memoization). We studied the ER.fst workload. Along
the x-axis, we vary the sampling rate and the percentage
of components included as front-end of middle compo-
nents. The y-axis shows the achieved throughput. For
the ER.fst workload it is better to apply memoization to
many components. The ideal sampling rate was 20%.
Studying Answer Quality: Figure 6(C) shows answer
quality (i.e., the true positive rate) as we increase timeout
settings. For LC.lit and ER.fst, we increase timeouts at
front-end components. We also validate our results by
increasing timeouts in an unrelated component in ER.fst
(Static). We observe that answer quality is stable in
the static setting. Further, answer quality curves differ
between applications. After timeout settings reach 600
milliseconds for LC.lit and 300 milliseconds for ER.fst,
the curves diverge and answer quality increase slowly
for ER.fst. Finally, answer quality curves have 2 phases
in LC.lit and 3 phases in ER.fst. It is challenging to use
timeouts to predict answer quality.

VI. ONLINE MANAGEMENT

OLDI services are provisioned to provide target re-
sponse times. In addition to classic metrics like response
time, these services could use answer quality to manage
resources. We show here that Ubora enables better
resource management through answer quality.
Control Theory with Answer Quality: We studied load
shedding on the LC.big workload. Using diurnal traces
from previous studies [17], we issued two classes of
queries: high and low priority. The queries were directed

to two different TCP ports. At the peak workload, low
and high priority arrival rates saturate system resources
(i.e., utilization is 90%). Figure 7 shows the Arrival Rate
over time (on the right axis). At the 45 minute and 2 hour
mark, the query mix shifts toward multiple word queries
that take longer to process fully.

We used Ubora to track answer quality for high prior-
ity queries. When quality dipped, we increased the load
shedding rate on low priority queries. Specifically, we
used a proportional-integral-derivative (PID) controller.
Every 100 requests, we computed answer quality from
20 sampled queries (20% sample rate).

The left axis of Figure 7 shows answer quality of
competing load shedding approaches. When all low
priority queries are shed, the No Sharing approach main-
tains answer quality above 90% throughout the trace.
When shedding is disabled, the Full Sharing approach
sees answer quality drop as low as 20%, corresponding
with peak arrival rates. The PID controller powered
by Ubora manages the shed rate well, keeping answer
quality above 90% in over 90% of the trace. It maintains
throughput (Ubora TPUT) of almost 60% of low priority
queries (shown on the right axis).

The state of the art for online management in OLDI
services is to use proxies for the answer quality metric.
Metrics like the frequency of timeouts provide a rough
indication of answer quality and are easier to compute
online [10]. For comparison, we implemented a PID
controller that used frequency of timeouts instead of an-
swer quality. We tuned the controller to achieve answer
quality similar to the controller based on answer quality.
However, timeout frequency is a conservative indicator
of answer quality for Lucene workloads. It assumes
that partial results caused by timeouts are dissimilar to
mature results. Figure 7 also shows that the controller
based on timeout frequency (TO Freq) sheds requests
too aggressively. Our approach improved throughput on
low priority queries by 37%.
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Figure 6. Temporal characteristics of failures from multiple HPC systems. The dashed vertical line indicates the “observed” mean time between failures
(MTBF). Multiple failures that occur beyond the x-axis limits are not shown here for clarity, but they contribute toward MTBF calculation.
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at level 0.05 if k-s test’s D-statistics is higher than the critical D-
value. Comparison between D-statistics and critical D-value shows that
Weibull distribution is a better fit in all cases except the last one.

We take advantage of this observation to reduce the checkpoint-
ing overhead on large-scale HPC systems by changing the check-
pointing intervals such that it captures the temporal locality in
failures. Towards that, we use two statistical techniques to fit our
failure inter-arrival times data against four distributions, normal,
Weibull, log normal, and the exponential distribution. First, Fig. 7
shows the results from the Kolmogorov-Smirnov test for different
distributions [15]. We notice that Weibull distribution fits our sam-
ple data better than the exponential distribution. We also present the
QQ-plot for visualizing the fitness of these distributions (Fig. 8),
which reaffirms the K-S test results.

We note that a Weibull distribution is specified using both a
scale parameter (λ) and shape parameter (k). If the value of shape
parameter is less than one, it indicates a high infant mortality rate
(i.e., the failure rate decreases over time). We point out that shape
parameter (k) is less than one for the Weibull distributions that fit
our failure sample data. This has also been observed by other re-
searchers for various other systems [21, 31, 35, 17], indicating a
larger applicability of the new techniques presented in this work
(Section 5), which are based on this observation. Next, we show
how does a better fitting Weibull distribution affect the OCI and the
total execution time (as opposed to the previously discussed analyt-
ical model and simulation-based results that assumed exponential
distribution of failure inter-arrival times).
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QQ−Plot from Failure Log Samples (LANL System 5)

Figure 8. QQ-Plot for graphical representation of fitting different
probability distribution functions (PDF). The quantiles drawn from
the sample (failure log) are on the x-axis and y-axis shows theoretical
quantiles. If the samples statistically come from a particular distribution
function then points of QQ-plot fall on or near the straight line with
slope=1. Only three representative failure logs are plotted due to space
constraints, the rest show similar behavior.

4.2 Effect of Temporal Locality in Failures on OCI

We found that the failure inter-arrival times are better fitted by a
Weibull distribution than an exponential distribution. Therefore, in
this section we present the results from our event-driven simulator
to study how the OCI and total execution time are affected if failure
events are drawn from a Weibull distribution instead of an expo-
nential distribution (as assumed in previously discussed analytical
model). Fig. 9 shows the total execution time of a “hero” run on
three different systems (10K, 20K and 100K nodes). We notice that
the Weibull distribution curve is always below the exponential dis-
tribution curve. This result suggests that if failure events are drawn
from a Weibull distribution, it will result in an overall execution

(a) (b) (c)

0 5 10 15 20 25

Time between two failures (in hours)

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

16.0%

18.0%

P
e
rc
e
n
ta
g
e
o
f
to
ta
l
fa
il
u
re
s

LANL System 18

(d)

0 5 10 15 20 25

Time between two failures (in hours)

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

16.0%

P
e
rc
e
n
ta
g
e
o
f
to
ta
l
fa
il
u
re
s

LANL System 19

(e)

0 5 10 15 20 25

Time between two failures (in hours)

0.0%

5.0%

10.0%

15.0%

20.0%

P
e
rc
e
n
ta
g
e
o
f
to
ta
l
fa
il
u
re
s

LANL System 20

(f)

Figure 6. Temporal characteristics of failures from multiple HPC systems. The dashed vertical line indicates the “observed” mean time between failures
(MTBF). Multiple failures that occur beyond the x-axis limits are not shown here for clarity, but they contribute toward MTBF calculation.
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Figure 7. Result of Kolmogorov-Smirnov test (K-S test) for failure
logs of multiple systems. Null hypothesis that the samples for a given
system comes from a given probability distribution function is rejected
at level 0.05 if k-s test’s D-statistics is higher than the critical D-
value. Comparison between D-statistics and critical D-value shows that
Weibull distribution is a better fit in all cases except the last one.

We take advantage of this observation to reduce the checkpoint-
ing overhead on large-scale HPC systems by changing the check-
pointing intervals such that it captures the temporal locality in
failures. Towards that, we use two statistical techniques to fit our
failure inter-arrival times data against four distributions, normal,
Weibull, log normal, and the exponential distribution. First, Fig. 7
shows the results from the Kolmogorov-Smirnov test for different
distributions [15]. We notice that Weibull distribution fits our sam-
ple data better than the exponential distribution. We also present the
QQ-plot for visualizing the fitness of these distributions (Fig. 8),
which reaffirms the K-S test results.

We note that a Weibull distribution is specified using both a
scale parameter (λ) and shape parameter (k). If the value of shape
parameter is less than one, it indicates a high infant mortality rate
(i.e., the failure rate decreases over time). We point out that shape
parameter (k) is less than one for the Weibull distributions that fit
our failure sample data. This has also been observed by other re-
searchers for various other systems [21, 31, 35, 17], indicating a
larger applicability of the new techniques presented in this work
(Section 5), which are based on this observation. Next, we show
how does a better fitting Weibull distribution affect the OCI and the
total execution time (as opposed to the previously discussed analyt-
ical model and simulation-based results that assumed exponential
distribution of failure inter-arrival times).
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QQ−Plot from Failure Log Samples (LANL System 5)

Figure 8. QQ-Plot for graphical representation of fitting different
probability distribution functions (PDF). The quantiles drawn from
the sample (failure log) are on the x-axis and y-axis shows theoretical
quantiles. If the samples statistically come from a particular distribution
function then points of QQ-plot fall on or near the straight line with
slope=1. Only three representative failure logs are plotted due to space
constraints, the rest show similar behavior.

4.2 Effect of Temporal Locality in Failures on OCI

We found that the failure inter-arrival times are better fitted by a
Weibull distribution than an exponential distribution. Therefore, in
this section we present the results from our event-driven simulator
to study how the OCI and total execution time are affected if failure
events are drawn from a Weibull distribution instead of an expo-
nential distribution (as assumed in previously discussed analytical
model). Fig. 9 shows the total execution time of a “hero” run on
three different systems (10K, 20K and 100K nodes). We notice that
the Weibull distribution curve is always below the exponential dis-
tribution curve. This result suggests that if failure events are drawn
from a Weibull distribution, it will result in an overall execution

A large fraction of failures occur much 
before the MTBF for many HPC systems.
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Ttotal = Tcompute + Tcheckpoint + Twaste (1)

where the total compute time, Tcompute, is equal to the check-
point interval times the total number of steps in a failure-free en-
vironment ( Tcompute = Sα). Similarly, the time spent towards
checkpointing can be expressed as follows:

Tcheckpoint = (S − 1)β (2)

= (
Tcompute

α
− 1)β (3)

Total overhead due to failures can be broken down into two
components. First, each failure will cause a certain fraction, say ϵ,
of the computation and checkpointing duration, α+ β to go waste.
Second, each failure will have an associated recovery overhead, γ.
Thus, the total overhead due to failures can be expressed as:

Twaste = Nf (ϵ(α+ β) + γ) (4)

where Nf is the total number of failures. Both Nf and ϵ are
dependent on the nature of the failure distribution. Next, we derive
an expression for Nf assuming that failures follow an exponential
distribution, as assumed in previous studies [37, 36, 30, 7, 28]. We
will revisit the validity of this assumption using the failure logs col-
lected from supercomputer facilities (Section 4). We also quantita-
tively estimate the value of ϵ under these assumptions (Section 4.2).

The number of failures can be expressed as the difference be-
tween the total number of trials needed to complete S chunks with-
out encountering a failure and the number of times the chunks com-
plete successfully (S). Recall that each chunk is a pair of compute
and checkpointing activity, (α+β). The number of trials can be fur-
ther estimated as S divided by the probability of not failing before
the period α+ β (i.e., 1− Pr(t < (α+ β))). Therefore,

Nf =
S

1− Pr(t < (α+ β))
− S (5)

For an exponential distribution, the probability of failure before

time t is given by Pr(X ≤ t) = 1−e−
t
M , where M is the MTBF.

Using this, the above expression can be simplified as:

Nf = S(e
α+β
M − 1) (6)

Putting it all together, the total job execution time (Eq. 1) can
be obtained as a complete function of the checkpoint interval, α, by

substituting S with
Tcompute

α
as follows:

Ttotal = Tcompute + (
Tcompute

α
− 1)β (7)

+
Tcompute

α
(e

α+β
M − 1)(ϵ(α+ β) + γ)

For the range, where α+ β ≪ M , we can simplify the above
expression:

Ttotal = Tcompute + (
Tcompute

α
− 1)β (8)

+
Tcompute

α
(
α+ β
M

)(ϵ(α+ β) + γ)

Optimal checkpoint interval, αoci, that will minimize the total
execution time can be obtained by solving d

dα
(Ttotal) = 0. The

Figure 3. Value of ϵ, i.e., lost work fraction for exponential distribution.

above formula can be differentiated to get the following:

1
M

(ϵ−
ϵβ2

α2
oci

−
ϵγ
α2
oci

)−
β

α2
oci

= 0 (9)

Solving this we get the expression for optimal checkpoint
interval (OCI):

αoci =

√

β2 +
βγ
ϵ

+
Mβ
ϵ

(10)

Previous studies have done similar theoretical exercise and de-
rived different variants [37, 36, 7, 30, 22, 28]. However, our ex-
ercise is slightly different as it retains the average fraction of lost
work, ϵ, in the equation, which leads to a better understanding when
we compare this model with real world supercomputer logs (Sec-
tion 4). The average fraction of lost work, ϵ, becomes the key to
understanding the difference between the model and the real-world
and its impact on the total execution time.

3.2 Model Validation and Model Driven Study

In this section, we compare our model based results against the
results from an event-driven simulator that we have developed. We
study the optimal checkpointing interval (OCI) estimation from
these two approaches for current and future large-scale systems.

Recall that our analytical model can predict both the total run-
time (Eq. 8) and OCI (Eq. 10). To drive this model, we use the pa-
rameters obtained from supercomputing facilities (Section 2). The
compute-time of a job is assumed to be 500 hours, though individ-
ual leadership applications may have varied compute-time require-
ments (Table 1). The checkpoint time is taken as 0.5 hours, typical
of multiple leadership computing facilities [6]. MTBF of one node
is taken to be 25 years (Section 2) and adjusted according to the
system size.

We empirically obtain the fraction of lost work, ϵ (Fig. 3), by
generating one million samples from an exponential distribution
(MTBF 10 hours) and estimating the lost work for a given time
interval. Note that it is not the same as the probability of a failure in
that interval. Fig. 3 shows the value of ϵ beyond the MTBF interval.
A value of 0.50 for ϵ reduces the OCI estimation as approximated
by Daly’s formula as well [7]. We revisit the significance and
implications of the “fraction of lost work”, ϵ, again in Section 4.2,
when analyzing supercomputer failure logs.

To validate our model results, we built an event-driven simula-
tor that simulates the execution of an application given certain pa-
rameters, e.g. type of failure distribution (exponential distribution),
checkpoint time, restart time, MTBF, and compute time. It does not
rely on any mathematical equation, instead it mimics an application
execution on a leadership machine. For example, the application
experiences probabilistically generated failures and recovers from
it. Ideally, modeling results should match the simulation-based re-
sults.

Fig. 4 shows the total runtime of a scientific application ob-
tained from both our analytical model and the event-driven simu-
lation. The figure depicts a “hero” run that uses all the nodes in
a system (e.g., 20K and 100K node runs). The OCI in the figure
is the point where the total execution is at a minimum. First, we
observe that the OCI decreases as the system size grows (left and
right charts). Second, the modeling and simulation results closely
track each other. For a petascale system (Fig. 4 (left)), the model-
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Ttotal = Tcompute + Tcheckpoint + Twaste (1)

where the total compute time, Tcompute, is equal to the check-
point interval times the total number of steps in a failure-free en-
vironment ( Tcompute = Sα). Similarly, the time spent towards
checkpointing can be expressed as follows:

Tcheckpoint = (S − 1)β (2)

= (
Tcompute

α
− 1)β (3)

Total overhead due to failures can be broken down into two
components. First, each failure will cause a certain fraction, say ϵ,
of the computation and checkpointing duration, α+ β to go waste.
Second, each failure will have an associated recovery overhead, γ.
Thus, the total overhead due to failures can be expressed as:

Twaste = Nf (ϵ(α+ β) + γ) (4)

where Nf is the total number of failures. Both Nf and ϵ are
dependent on the nature of the failure distribution. Next, we derive
an expression for Nf assuming that failures follow an exponential
distribution, as assumed in previous studies [37, 36, 30, 7, 28]. We
will revisit the validity of this assumption using the failure logs col-
lected from supercomputer facilities (Section 4). We also quantita-
tively estimate the value of ϵ under these assumptions (Section 4.2).

The number of failures can be expressed as the difference be-
tween the total number of trials needed to complete S chunks with-
out encountering a failure and the number of times the chunks com-
plete successfully (S). Recall that each chunk is a pair of compute
and checkpointing activity, (α+β). The number of trials can be fur-
ther estimated as S divided by the probability of not failing before
the period α+ β (i.e., 1− Pr(t < (α+ β))). Therefore,

Nf =
S

1− Pr(t < (α+ β))
− S (5)

For an exponential distribution, the probability of failure before

time t is given by Pr(X ≤ t) = 1−e−
t
M , where M is the MTBF.

Using this, the above expression can be simplified as:

Nf = S(e
α+β
M − 1) (6)

Putting it all together, the total job execution time (Eq. 1) can
be obtained as a complete function of the checkpoint interval, α, by

substituting S with
Tcompute

α
as follows:

Ttotal = Tcompute + (
Tcompute

α
− 1)β (7)

+
Tcompute

α
(e

α+β
M − 1)(ϵ(α+ β) + γ)

For the range, where α+ β ≪ M , we can simplify the above
expression:

Ttotal = Tcompute + (
Tcompute

α
− 1)β (8)

+
Tcompute

α
(
α+ β
M

)(ϵ(α+ β) + γ)

Optimal checkpoint interval, αoci, that will minimize the total
execution time can be obtained by solving d

dα
(Ttotal) = 0. The
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above formula can be differentiated to get the following:
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Solving this we get the expression for optimal checkpoint
interval (OCI):

αoci =
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βγ
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+
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(10)

Previous studies have done similar theoretical exercise and de-
rived different variants [37, 36, 7, 30, 22, 28]. However, our ex-
ercise is slightly different as it retains the average fraction of lost
work, ϵ, in the equation, which leads to a better understanding when
we compare this model with real world supercomputer logs (Sec-
tion 4). The average fraction of lost work, ϵ, becomes the key to
understanding the difference between the model and the real-world
and its impact on the total execution time.

3.2 Model Validation and Model Driven Study

In this section, we compare our model based results against the
results from an event-driven simulator that we have developed. We
study the optimal checkpointing interval (OCI) estimation from
these two approaches for current and future large-scale systems.

Recall that our analytical model can predict both the total run-
time (Eq. 8) and OCI (Eq. 10). To drive this model, we use the pa-
rameters obtained from supercomputing facilities (Section 2). The
compute-time of a job is assumed to be 500 hours, though individ-
ual leadership applications may have varied compute-time require-
ments (Table 1). The checkpoint time is taken as 0.5 hours, typical
of multiple leadership computing facilities [6]. MTBF of one node
is taken to be 25 years (Section 2) and adjusted according to the
system size.

We empirically obtain the fraction of lost work, ϵ (Fig. 3), by
generating one million samples from an exponential distribution
(MTBF 10 hours) and estimating the lost work for a given time
interval. Note that it is not the same as the probability of a failure in
that interval. Fig. 3 shows the value of ϵ beyond the MTBF interval.
A value of 0.50 for ϵ reduces the OCI estimation as approximated
by Daly’s formula as well [7]. We revisit the significance and
implications of the “fraction of lost work”, ϵ, again in Section 4.2,
when analyzing supercomputer failure logs.

To validate our model results, we built an event-driven simula-
tor that simulates the execution of an application given certain pa-
rameters, e.g. type of failure distribution (exponential distribution),
checkpoint time, restart time, MTBF, and compute time. It does not
rely on any mathematical equation, instead it mimics an application
execution on a leadership machine. For example, the application
experiences probabilistically generated failures and recovers from
it. Ideally, modeling results should match the simulation-based re-
sults.

Fig. 4 shows the total runtime of a scientific application ob-
tained from both our analytical model and the event-driven simu-
lation. The figure depicts a “hero” run that uses all the nodes in
a system (e.g., 20K and 100K node runs). The OCI in the figure
is the point where the total execution is at a minimum. First, we
observe that the OCI decreases as the system size grows (left and
right charts). Second, the modeling and simulation results closely
track each other. For a petascale system (Fig. 4 (left)), the model-

Computation Checkpoint

α β

Waste Restart

γ

Failure

α β+( )ϵ

Computation Checkpoint Computation Checkpoint

Checkpoint
Interval

Figure 2. Periodic computation and checkpoint phases of scientific
application.

Ttotal = Tcompute + Tcheckpoint + Twaste (1)

where the total compute time, Tcompute, is equal to the check-
point interval times the total number of steps in a failure-free en-
vironment ( Tcompute = Sα). Similarly, the time spent towards
checkpointing can be expressed as follows:

Tcheckpoint = (S − 1)β (2)

= (
Tcompute

α
− 1)β (3)

Total overhead due to failures can be broken down into two
components. First, each failure will cause a certain fraction, say ϵ,
of the computation and checkpointing duration, α+ β to go waste.
Second, each failure will have an associated recovery overhead, γ.
Thus, the total overhead due to failures can be expressed as:

Twaste = Nf (ϵ(α+ β) + γ) (4)

where Nf is the total number of failures. Both Nf and ϵ are
dependent on the nature of the failure distribution. Next, we derive
an expression for Nf assuming that failures follow an exponential
distribution, as assumed in previous studies [37, 36, 30, 7, 28]. We
will revisit the validity of this assumption using the failure logs col-
lected from supercomputer facilities (Section 4). We also quantita-
tively estimate the value of ϵ under these assumptions (Section 4.2).

The number of failures can be expressed as the difference be-
tween the total number of trials needed to complete S chunks with-
out encountering a failure and the number of times the chunks com-
plete successfully (S). Recall that each chunk is a pair of compute
and checkpointing activity, (α+β). The number of trials can be fur-
ther estimated as S divided by the probability of not failing before
the period α+ β (i.e., 1− Pr(t < (α+ β))). Therefore,

Nf =
S

1− Pr(t < (α+ β))
− S (5)

For an exponential distribution, the probability of failure before

time t is given by Pr(X ≤ t) = 1−e−
t
M , where M is the MTBF.

Using this, the above expression can be simplified as:

Nf = S(e
α+β
M − 1) (6)

Putting it all together, the total job execution time (Eq. 1) can
be obtained as a complete function of the checkpoint interval, α, by

substituting S with
Tcompute

α
as follows:

Ttotal = Tcompute + (
Tcompute

α
− 1)β (7)

+
Tcompute

α
(e

α+β
M − 1)(ϵ(α+ β) + γ)

For the range, where α+ β ≪ M , we can simplify the above
expression:

Ttotal = Tcompute + (
Tcompute

α
− 1)β (8)

+
Tcompute

α
(
α+ β
M

)(ϵ(α+ β) + γ)

Optimal checkpoint interval, αoci, that will minimize the total
execution time can be obtained by solving d

dα
(Ttotal) = 0. The

Figure 3. Value of ϵ, i.e., lost work fraction for exponential distribution.

above formula can be differentiated to get the following:

1
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(ϵ−
ϵβ2

α2
oci

−
ϵγ
α2
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)−
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oci

= 0 (9)

Solving this we get the expression for optimal checkpoint
interval (OCI):

αoci =

√

β2 +
βγ
ϵ

+
Mβ
ϵ

(10)

Previous studies have done similar theoretical exercise and de-
rived different variants [37, 36, 7, 30, 22, 28]. However, our ex-
ercise is slightly different as it retains the average fraction of lost
work, ϵ, in the equation, which leads to a better understanding when
we compare this model with real world supercomputer logs (Sec-
tion 4). The average fraction of lost work, ϵ, becomes the key to
understanding the difference between the model and the real-world
and its impact on the total execution time.

3.2 Model Validation and Model Driven Study

In this section, we compare our model based results against the
results from an event-driven simulator that we have developed. We
study the optimal checkpointing interval (OCI) estimation from
these two approaches for current and future large-scale systems.

Recall that our analytical model can predict both the total run-
time (Eq. 8) and OCI (Eq. 10). To drive this model, we use the pa-
rameters obtained from supercomputing facilities (Section 2). The
compute-time of a job is assumed to be 500 hours, though individ-
ual leadership applications may have varied compute-time require-
ments (Table 1). The checkpoint time is taken as 0.5 hours, typical
of multiple leadership computing facilities [6]. MTBF of one node
is taken to be 25 years (Section 2) and adjusted according to the
system size.

We empirically obtain the fraction of lost work, ϵ (Fig. 3), by
generating one million samples from an exponential distribution
(MTBF 10 hours) and estimating the lost work for a given time
interval. Note that it is not the same as the probability of a failure in
that interval. Fig. 3 shows the value of ϵ beyond the MTBF interval.
A value of 0.50 for ϵ reduces the OCI estimation as approximated
by Daly’s formula as well [7]. We revisit the significance and
implications of the “fraction of lost work”, ϵ, again in Section 4.2,
when analyzing supercomputer failure logs.

To validate our model results, we built an event-driven simula-
tor that simulates the execution of an application given certain pa-
rameters, e.g. type of failure distribution (exponential distribution),
checkpoint time, restart time, MTBF, and compute time. It does not
rely on any mathematical equation, instead it mimics an application
execution on a leadership machine. For example, the application
experiences probabilistically generated failures and recovers from
it. Ideally, modeling results should match the simulation-based re-
sults.

Fig. 4 shows the total runtime of a scientific application ob-
tained from both our analytical model and the event-driven simu-
lation. The figure depicts a “hero” run that uses all the nodes in
a system (e.g., 20K and 100K node runs). The OCI in the figure
is the point where the total execution is at a minimum. First, we
observe that the OCI decreases as the system size grows (left and
right charts). Second, the modeling and simulation results closely
track each other. For a petascale system (Fig. 4 (left)), the model-
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Ttotal = Tcompute + Tcheckpoint + Twaste (1)

where the total compute time, Tcompute, is equal to the check-
point interval times the total number of steps in a failure-free en-
vironment ( Tcompute = Sα). Similarly, the time spent towards
checkpointing can be expressed as follows:

Tcheckpoint = (S − 1)β (2)

= (
Tcompute

α
− 1)β (3)

Total overhead due to failures can be broken down into two
components. First, each failure will cause a certain fraction, say ϵ,
of the computation and checkpointing duration, α+ β to go waste.
Second, each failure will have an associated recovery overhead, γ.
Thus, the total overhead due to failures can be expressed as:

Twaste = Nf (ϵ(α+ β) + γ) (4)

where Nf is the total number of failures. Both Nf and ϵ are
dependent on the nature of the failure distribution. Next, we derive
an expression for Nf assuming that failures follow an exponential
distribution, as assumed in previous studies [37, 36, 30, 7, 28]. We
will revisit the validity of this assumption using the failure logs col-
lected from supercomputer facilities (Section 4). We also quantita-
tively estimate the value of ϵ under these assumptions (Section 4.2).

The number of failures can be expressed as the difference be-
tween the total number of trials needed to complete S chunks with-
out encountering a failure and the number of times the chunks com-
plete successfully (S). Recall that each chunk is a pair of compute
and checkpointing activity, (α+β). The number of trials can be fur-
ther estimated as S divided by the probability of not failing before
the period α+ β (i.e., 1− Pr(t < (α+ β))). Therefore,

Nf =
S

1− Pr(t < (α+ β))
− S (5)

For an exponential distribution, the probability of failure before

time t is given by Pr(X ≤ t) = 1−e−
t
M , where M is the MTBF.

Using this, the above expression can be simplified as:

Nf = S(e
α+β
M − 1) (6)

Putting it all together, the total job execution time (Eq. 1) can
be obtained as a complete function of the checkpoint interval, α, by

substituting S with
Tcompute

α
as follows:

Ttotal = Tcompute + (
Tcompute

α
− 1)β (7)

+
Tcompute

α
(e

α+β
M − 1)(ϵ(α+ β) + γ)

For the range, where α+ β ≪ M , we can simplify the above
expression:

Ttotal = Tcompute + (
Tcompute

α
− 1)β (8)

+
Tcompute

α
(
α+ β
M

)(ϵ(α+ β) + γ)

Optimal checkpoint interval, αoci, that will minimize the total
execution time can be obtained by solving d

dα
(Ttotal) = 0. The
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above formula can be differentiated to get the following:

1
M

(ϵ−
ϵβ2

α2
oci

−
ϵγ
α2
oci

)−
β

α2
oci

= 0 (9)

Solving this we get the expression for optimal checkpoint
interval (OCI):

αoci =

√

β2 +
βγ
ϵ

+
Mβ
ϵ

(10)

Previous studies have done similar theoretical exercise and de-
rived different variants [37, 36, 7, 30, 22, 28]. However, our ex-
ercise is slightly different as it retains the average fraction of lost
work, ϵ, in the equation, which leads to a better understanding when
we compare this model with real world supercomputer logs (Sec-
tion 4). The average fraction of lost work, ϵ, becomes the key to
understanding the difference between the model and the real-world
and its impact on the total execution time.

3.2 Model Validation and Model Driven Study

In this section, we compare our model based results against the
results from an event-driven simulator that we have developed. We
study the optimal checkpointing interval (OCI) estimation from
these two approaches for current and future large-scale systems.

Recall that our analytical model can predict both the total run-
time (Eq. 8) and OCI (Eq. 10). To drive this model, we use the pa-
rameters obtained from supercomputing facilities (Section 2). The
compute-time of a job is assumed to be 500 hours, though individ-
ual leadership applications may have varied compute-time require-
ments (Table 1). The checkpoint time is taken as 0.5 hours, typical
of multiple leadership computing facilities [6]. MTBF of one node
is taken to be 25 years (Section 2) and adjusted according to the
system size.

We empirically obtain the fraction of lost work, ϵ (Fig. 3), by
generating one million samples from an exponential distribution
(MTBF 10 hours) and estimating the lost work for a given time
interval. Note that it is not the same as the probability of a failure in
that interval. Fig. 3 shows the value of ϵ beyond the MTBF interval.
A value of 0.50 for ϵ reduces the OCI estimation as approximated
by Daly’s formula as well [7]. We revisit the significance and
implications of the “fraction of lost work”, ϵ, again in Section 4.2,
when analyzing supercomputer failure logs.

To validate our model results, we built an event-driven simula-
tor that simulates the execution of an application given certain pa-
rameters, e.g. type of failure distribution (exponential distribution),
checkpoint time, restart time, MTBF, and compute time. It does not
rely on any mathematical equation, instead it mimics an application
execution on a leadership machine. For example, the application
experiences probabilistically generated failures and recovers from
it. Ideally, modeling results should match the simulation-based re-
sults.

Fig. 4 shows the total runtime of a scientific application ob-
tained from both our analytical model and the event-driven simu-
lation. The figure depicts a “hero” run that uses all the nodes in
a system (e.g., 20K and 100K node runs). The OCI in the figure
is the point where the total execution is at a minimum. First, we
observe that the OCI decreases as the system size grows (left and
right charts). Second, the modeling and simulation results closely
track each other. For a petascale system (Fig. 4 (left)), the model-
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Ttotal = Tcompute + Tcheckpoint + Twaste (1)

where the total compute time, Tcompute, is equal to the check-
point interval times the total number of steps in a failure-free en-
vironment ( Tcompute = Sα). Similarly, the time spent towards
checkpointing can be expressed as follows:

Tcheckpoint = (S − 1)β (2)

= (
Tcompute

α
− 1)β (3)

Total overhead due to failures can be broken down into two
components. First, each failure will cause a certain fraction, say ϵ,
of the computation and checkpointing duration, α+ β to go waste.
Second, each failure will have an associated recovery overhead, γ.
Thus, the total overhead due to failures can be expressed as:

Twaste = Nf (ϵ(α+ β) + γ) (4)

where Nf is the total number of failures. Both Nf and ϵ are
dependent on the nature of the failure distribution. Next, we derive
an expression for Nf assuming that failures follow an exponential
distribution, as assumed in previous studies [37, 36, 30, 7, 28]. We
will revisit the validity of this assumption using the failure logs col-
lected from supercomputer facilities (Section 4). We also quantita-
tively estimate the value of ϵ under these assumptions (Section 4.2).

The number of failures can be expressed as the difference be-
tween the total number of trials needed to complete S chunks with-
out encountering a failure and the number of times the chunks com-
plete successfully (S). Recall that each chunk is a pair of compute
and checkpointing activity, (α+β). The number of trials can be fur-
ther estimated as S divided by the probability of not failing before
the period α+ β (i.e., 1− Pr(t < (α+ β))). Therefore,

Nf =
S

1− Pr(t < (α+ β))
− S (5)

For an exponential distribution, the probability of failure before

time t is given by Pr(X ≤ t) = 1−e−
t
M , where M is the MTBF.

Using this, the above expression can be simplified as:

Nf = S(e
α+β
M − 1) (6)

Putting it all together, the total job execution time (Eq. 1) can
be obtained as a complete function of the checkpoint interval, α, by

substituting S with
Tcompute

α
as follows:

Ttotal = Tcompute + (
Tcompute

α
− 1)β (7)

+
Tcompute

α
(e

α+β
M − 1)(ϵ(α+ β) + γ)

For the range, where α+ β ≪ M , we can simplify the above
expression:

Ttotal = Tcompute + (
Tcompute

α
− 1)β (8)

+
Tcompute

α
(
α+ β
M

)(ϵ(α+ β) + γ)

Optimal checkpoint interval, αoci, that will minimize the total
execution time can be obtained by solving d

dα
(Ttotal) = 0. The
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above formula can be differentiated to get the following:

1
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ϵβ2
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−
ϵγ
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)−
β
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= 0 (9)

Solving this we get the expression for optimal checkpoint
interval (OCI):

αoci =

√

β2 +
βγ
ϵ

+
Mβ
ϵ

(10)

Previous studies have done similar theoretical exercise and de-
rived different variants [37, 36, 7, 30, 22, 28]. However, our ex-
ercise is slightly different as it retains the average fraction of lost
work, ϵ, in the equation, which leads to a better understanding when
we compare this model with real world supercomputer logs (Sec-
tion 4). The average fraction of lost work, ϵ, becomes the key to
understanding the difference between the model and the real-world
and its impact on the total execution time.

3.2 Model Validation and Model Driven Study

In this section, we compare our model based results against the
results from an event-driven simulator that we have developed. We
study the optimal checkpointing interval (OCI) estimation from
these two approaches for current and future large-scale systems.

Recall that our analytical model can predict both the total run-
time (Eq. 8) and OCI (Eq. 10). To drive this model, we use the pa-
rameters obtained from supercomputing facilities (Section 2). The
compute-time of a job is assumed to be 500 hours, though individ-
ual leadership applications may have varied compute-time require-
ments (Table 1). The checkpoint time is taken as 0.5 hours, typical
of multiple leadership computing facilities [6]. MTBF of one node
is taken to be 25 years (Section 2) and adjusted according to the
system size.

We empirically obtain the fraction of lost work, ϵ (Fig. 3), by
generating one million samples from an exponential distribution
(MTBF 10 hours) and estimating the lost work for a given time
interval. Note that it is not the same as the probability of a failure in
that interval. Fig. 3 shows the value of ϵ beyond the MTBF interval.
A value of 0.50 for ϵ reduces the OCI estimation as approximated
by Daly’s formula as well [7]. We revisit the significance and
implications of the “fraction of lost work”, ϵ, again in Section 4.2,
when analyzing supercomputer failure logs.

To validate our model results, we built an event-driven simula-
tor that simulates the execution of an application given certain pa-
rameters, e.g. type of failure distribution (exponential distribution),
checkpoint time, restart time, MTBF, and compute time. It does not
rely on any mathematical equation, instead it mimics an application
execution on a leadership machine. For example, the application
experiences probabilistically generated failures and recovers from
it. Ideally, modeling results should match the simulation-based re-
sults.

Fig. 4 shows the total runtime of a scientific application ob-
tained from both our analytical model and the event-driven simu-
lation. The figure depicts a “hero” run that uses all the nodes in
a system (e.g., 20K and 100K node runs). The OCI in the figure
is the point where the total execution is at a minimum. First, we
observe that the OCI decreases as the system size grows (left and
right charts). Second, the modeling and simulation results closely
track each other. For a petascale system (Fig. 4 (left)), the model-
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Ttotal = Tcompute + Tcheckpoint + Twaste (1)

where the total compute time, Tcompute, is equal to the check-
point interval times the total number of steps in a failure-free en-
vironment ( Tcompute = Sα). Similarly, the time spent towards
checkpointing can be expressed as follows:

Tcheckpoint = (S − 1)β (2)

= (
Tcompute

α
− 1)β (3)

Total overhead due to failures can be broken down into two
components. First, each failure will cause a certain fraction, say ϵ,
of the computation and checkpointing duration, α+ β to go waste.
Second, each failure will have an associated recovery overhead, γ.
Thus, the total overhead due to failures can be expressed as:

Twaste = Nf (ϵ(α+ β) + γ) (4)

where Nf is the total number of failures. Both Nf and ϵ are
dependent on the nature of the failure distribution. Next, we derive
an expression for Nf assuming that failures follow an exponential
distribution, as assumed in previous studies [37, 36, 30, 7, 28]. We
will revisit the validity of this assumption using the failure logs col-
lected from supercomputer facilities (Section 4). We also quantita-
tively estimate the value of ϵ under these assumptions (Section 4.2).

The number of failures can be expressed as the difference be-
tween the total number of trials needed to complete S chunks with-
out encountering a failure and the number of times the chunks com-
plete successfully (S). Recall that each chunk is a pair of compute
and checkpointing activity, (α+β). The number of trials can be fur-
ther estimated as S divided by the probability of not failing before
the period α+ β (i.e., 1− Pr(t < (α+ β))). Therefore,

Nf =
S

1− Pr(t < (α+ β))
− S (5)

For an exponential distribution, the probability of failure before

time t is given by Pr(X ≤ t) = 1−e−
t
M , where M is the MTBF.
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Solving this we get the expression for optimal checkpoint
interval (OCI):

αoci =
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βγ
ϵ
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Mβ
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(10)

Previous studies have done similar theoretical exercise and de-
rived different variants [37, 36, 7, 30, 22, 28]. However, our ex-
ercise is slightly different as it retains the average fraction of lost
work, ϵ, in the equation, which leads to a better understanding when
we compare this model with real world supercomputer logs (Sec-
tion 4). The average fraction of lost work, ϵ, becomes the key to
understanding the difference between the model and the real-world
and its impact on the total execution time.

3.2 Model Validation and Model Driven Study

In this section, we compare our model based results against the
results from an event-driven simulator that we have developed. We
study the optimal checkpointing interval (OCI) estimation from
these two approaches for current and future large-scale systems.

Recall that our analytical model can predict both the total run-
time (Eq. 8) and OCI (Eq. 10). To drive this model, we use the pa-
rameters obtained from supercomputing facilities (Section 2). The
compute-time of a job is assumed to be 500 hours, though individ-
ual leadership applications may have varied compute-time require-
ments (Table 1). The checkpoint time is taken as 0.5 hours, typical
of multiple leadership computing facilities [6]. MTBF of one node
is taken to be 25 years (Section 2) and adjusted according to the
system size.

We empirically obtain the fraction of lost work, ϵ (Fig. 3), by
generating one million samples from an exponential distribution
(MTBF 10 hours) and estimating the lost work for a given time
interval. Note that it is not the same as the probability of a failure in
that interval. Fig. 3 shows the value of ϵ beyond the MTBF interval.
A value of 0.50 for ϵ reduces the OCI estimation as approximated
by Daly’s formula as well [7]. We revisit the significance and
implications of the “fraction of lost work”, ϵ, again in Section 4.2,
when analyzing supercomputer failure logs.

To validate our model results, we built an event-driven simula-
tor that simulates the execution of an application given certain pa-
rameters, e.g. type of failure distribution (exponential distribution),
checkpoint time, restart time, MTBF, and compute time. It does not
rely on any mathematical equation, instead it mimics an application
execution on a leadership machine. For example, the application
experiences probabilistically generated failures and recovers from
it. Ideally, modeling results should match the simulation-based re-
sults.

Fig. 4 shows the total runtime of a scientific application ob-
tained from both our analytical model and the event-driven simu-
lation. The figure depicts a “hero” run that uses all the nodes in
a system (e.g., 20K and 100K node runs). The OCI in the figure
is the point where the total execution is at a minimum. First, we
observe that the OCI decreases as the system size grows (left and
right charts). Second, the modeling and simulation results closely
track each other. For a petascale system (Fig. 4 (left)), the model-
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Figure 2. Periodic computation and checkpoint phases of scientific
application.
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rived different variants [37, 36, 7, 30, 22, 28]. However, our ex-
ercise is slightly different as it retains the average fraction of lost
work, ϵ, in the equation, which leads to a better understanding when
we compare this model with real world supercomputer logs (Sec-
tion 4). The average fraction of lost work, ϵ, becomes the key to
understanding the difference between the model and the real-world
and its impact on the total execution time.

3.2 Model Validation and Model Driven Study

In this section, we compare our model based results against the
results from an event-driven simulator that we have developed. We
study the optimal checkpointing interval (OCI) estimation from
these two approaches for current and future large-scale systems.

Recall that our analytical model can predict both the total run-
time (Eq. 8) and OCI (Eq. 10). To drive this model, we use the pa-
rameters obtained from supercomputing facilities (Section 2). The
compute-time of a job is assumed to be 500 hours, though individ-
ual leadership applications may have varied compute-time require-
ments (Table 1). The checkpoint time is taken as 0.5 hours, typical
of multiple leadership computing facilities [6]. MTBF of one node
is taken to be 25 years (Section 2) and adjusted according to the
system size.

We empirically obtain the fraction of lost work, ϵ (Fig. 3), by
generating one million samples from an exponential distribution
(MTBF 10 hours) and estimating the lost work for a given time
interval. Note that it is not the same as the probability of a failure in
that interval. Fig. 3 shows the value of ϵ beyond the MTBF interval.
A value of 0.50 for ϵ reduces the OCI estimation as approximated
by Daly’s formula as well [7]. We revisit the significance and
implications of the “fraction of lost work”, ϵ, again in Section 4.2,
when analyzing supercomputer failure logs.

To validate our model results, we built an event-driven simula-
tor that simulates the execution of an application given certain pa-
rameters, e.g. type of failure distribution (exponential distribution),
checkpoint time, restart time, MTBF, and compute time. It does not
rely on any mathematical equation, instead it mimics an application
execution on a leadership machine. For example, the application
experiences probabilistically generated failures and recovers from
it. Ideally, modeling results should match the simulation-based re-
sults.

Fig. 4 shows the total runtime of a scientific application ob-
tained from both our analytical model and the event-driven simu-
lation. The figure depicts a “hero” run that uses all the nodes in
a system (e.g., 20K and 100K node runs). The OCI in the figure
is the point where the total execution is at a minimum. First, we
observe that the OCI decreases as the system size grows (left and
right charts). Second, the modeling and simulation results closely
track each other. For a petascale system (Fig. 4 (left)), the model-
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“Bounding” the Checkpointing Interval

(a) (b) (c)

Figure 20. Benefits of iLazy with an upper bound checkpointing interval compared to the base OCI case across different scale of systems (number of
nodes on the x-axis): (a) checkpoint time, (b) total time, and (c) absolute performance savings in hours. (checkpoint time = 30 minutes, k =0.6) note the
difference in y-axis scales.
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Figure 21. Modeling the upper bound on the checkpointing interval
for no performance degradation.

Providing analytical performance bounds on the iLazy
checkpointing strategy:

We note that iLazy checkpointing technique reduces I/O over-
head significantly, however it may slightly increase the job run-
time even when the OCI is correctly estimated (Fig. 19). In some
situations, even such minimal performance loss may not be desir-
able. Therefore, we develop a mathematical model to provide no-
performance loss guarantees, at the cost of potentially decreased
reduction in I/O overhead.

The primary reason for performance loss lies in the inherent
nature of the iLazy checkpointing scheme: the checkpoint interval
becomes increasingly large. Consequently, in the cases where inter-
arrival time between failures may be considerably high, the amount
of lost work may negate the savings coming from infrequent check-
pointing. Therefore, to avoid any performance degradation, at any
given point we have to estimate if the checkpoint cost saving is
not smaller than the potential lost work. If so, the checkpoint inter-
val can not be larger than that. These trade-offs bound how large
a checkpoint interval can be. Unfortunately, estimating this at the
run time is difficult because it involves calculating the checkpoint-
ing cost saving, which in turn requires it to be compared with the
traditional OCI based scheme.

We reduce this problem to a relatively simpler case. We pro-
pose a simpler and conservative estimation of the largest possible
checkpointing interval such that no performance loss is incurred.
We focus only on how large the second checkpointing interval can
be, without degrading performance.

The proposed scenario is depicted in Fig. 21. If the second
checkpoint interval ends at t3, then we ask what is the maximum
value of t3 (resulting in the maximum allowed checkpointing in-
terval, αmax−oci) such that the potential benefit of reducing the
checkpointing cost is more than the amount of lost work compared
to the base OCI (αoci).

The amount of “additional” lost work compared to the OCI case
can be estimated in two steps: (1) calculating the probability of
failure in the time period between the end of second checkpoint in
the OCI case and the iLazy case (i.e., t2 and t4), and (2) multiplying
this probability by the additional lost work ((αmax−oci−αoci)), if
a failure did occur in this time window.

performance loss = (αmax−oci − αoci)(e
−(

t2
λ

)k
− e−(

t4
λ

)k )

= (αmax−oci − αoci)(e
−(

2(αoci+β)
λ

)k
− e−(
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λ
)k )

(12)

Note that the probability that an event happens between time tx

and ty is given by Pr(tx, ty) = e−( tx
λ

)k − e−(
ty
λ

)k (for Weibull
distribution).

The benefit can be estimated as one checkpointing cost saving
(β) multiplied by the probability that the failure happens beyond
time t3.

performance gain = βe−(
t3
λ

)k (13)

Therefore, by solving the following inequality, we can obtain
the maximum value of t3 that guarantees no performance degrada-
tion:

βe−(
αmax−oci+αoci+β

λ
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2(αoci+β)

λ
)k

−(αmax−oci − αoci)e
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αmax−oci+αoci+2β

λ
)k

(14)

If the αlazy (Eq. 11) is larger than the “upper bound” of the
checkpoint interval as determined by the above equation (Eq. 14),
then the checkpoint interval is capped at αmax−oci.

Note that our estimation of the maximum value of checkpoint
interval is conservative as doing the same cost-benefit analysis at a
later point (after actually saving multiple checkpoints) is likely to
result in higher benefits. In our evaluation (Fig. 20), we found that
even this conservative estimation obtained by a first-order approx-
imate cost-benefit model can work fairly well. In our experience,
we found the trends to remain the same across different settings.
However, this analysis depends on multiple factors, such as the base
OCI, time-to checkpoint and shape parameter, therefore, a more de-
tailed model, analysis and tuning may be required in certain cases.
Our results show that the the iLazy strategy with an upper bound
retains a significant amount of the I/O reduction provided by the
base iLazy scheme, without degrading performance. We note that it
provides approx. 20% reduction in checkpoint time. In fact, it may
improve performance by a few hours as opposed to the naive iLazy
checkpointing scheme that results in slight performance degrada-
tion at low node counts (Fig. 20(c)).

Observation 9. Using probabilistic estimation, an upper bound on
the increasing checkpoint interval can be achieved to avoid per-
formance degradation for the iLazy checkpointing strategy. This
capping retains a significant amount of original checkpointing cost
savings in the presence of other varying factors, with no perfor-
mance degradation guarantee.
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Figure 20. Benefits of iLazy with an upper bound checkpointing interval compared to the base OCI case across different scale of systems (number of
nodes on the x-axis): (a) checkpoint time, (b) total time, and (c) absolute performance savings in hours. (checkpoint time = 30 minutes, k =0.6) note the
difference in y-axis scales.
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Figure 21. Modeling the upper bound on the checkpointing interval
for no performance degradation.

Providing analytical performance bounds on the iLazy
checkpointing strategy:

We note that iLazy checkpointing technique reduces I/O over-
head significantly, however it may slightly increase the job run-
time even when the OCI is correctly estimated (Fig. 19). In some
situations, even such minimal performance loss may not be desir-
able. Therefore, we develop a mathematical model to provide no-
performance loss guarantees, at the cost of potentially decreased
reduction in I/O overhead.

The primary reason for performance loss lies in the inherent
nature of the iLazy checkpointing scheme: the checkpoint interval
becomes increasingly large. Consequently, in the cases where inter-
arrival time between failures may be considerably high, the amount
of lost work may negate the savings coming from infrequent check-
pointing. Therefore, to avoid any performance degradation, at any
given point we have to estimate if the checkpoint cost saving is
not smaller than the potential lost work. If so, the checkpoint inter-
val can not be larger than that. These trade-offs bound how large
a checkpoint interval can be. Unfortunately, estimating this at the
run time is difficult because it involves calculating the checkpoint-
ing cost saving, which in turn requires it to be compared with the
traditional OCI based scheme.

We reduce this problem to a relatively simpler case. We pro-
pose a simpler and conservative estimation of the largest possible
checkpointing interval such that no performance loss is incurred.
We focus only on how large the second checkpointing interval can
be, without degrading performance.

The proposed scenario is depicted in Fig. 21. If the second
checkpoint interval ends at t3, then we ask what is the maximum
value of t3 (resulting in the maximum allowed checkpointing in-
terval, αmax−oci) such that the potential benefit of reducing the
checkpointing cost is more than the amount of lost work compared
to the base OCI (αoci).

The amount of “additional” lost work compared to the OCI case
can be estimated in two steps: (1) calculating the probability of
failure in the time period between the end of second checkpoint in
the OCI case and the iLazy case (i.e., t2 and t4), and (2) multiplying
this probability by the additional lost work ((αmax−oci−αoci)), if
a failure did occur in this time window.
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The benefit can be estimated as one checkpointing cost saving
(β) multiplied by the probability that the failure happens beyond
time t3.
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Therefore, by solving the following inequality, we can obtain
the maximum value of t3 that guarantees no performance degrada-
tion:
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If the αlazy (Eq. 11) is larger than the “upper bound” of the
checkpoint interval as determined by the above equation (Eq. 14),
then the checkpoint interval is capped at αmax−oci.

Note that our estimation of the maximum value of checkpoint
interval is conservative as doing the same cost-benefit analysis at a
later point (after actually saving multiple checkpoints) is likely to
result in higher benefits. In our evaluation (Fig. 20), we found that
even this conservative estimation obtained by a first-order approx-
imate cost-benefit model can work fairly well. In our experience,
we found the trends to remain the same across different settings.
However, this analysis depends on multiple factors, such as the base
OCI, time-to checkpoint and shape parameter, therefore, a more de-
tailed model, analysis and tuning may be required in certain cases.
Our results show that the the iLazy strategy with an upper bound
retains a significant amount of the I/O reduction provided by the
base iLazy scheme, without degrading performance. We note that it
provides approx. 20% reduction in checkpoint time. In fact, it may
improve performance by a few hours as opposed to the naive iLazy
checkpointing scheme that results in slight performance degrada-
tion at low node counts (Fig. 20(c)).

Observation 9. Using probabilistic estimation, an upper bound on
the increasing checkpoint interval can be achieved to avoid per-
formance degradation for the iLazy checkpointing strategy. This
capping retains a significant amount of original checkpointing cost
savings in the presence of other varying factors, with no perfor-
mance degradation guarantee.
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Figure 20. Benefits of iLazy with an upper bound checkpointing interval compared to the base OCI case across different scale of systems (number of
nodes on the x-axis): (a) checkpoint time, (b) total time, and (c) absolute performance savings in hours. (checkpoint time = 30 minutes, k =0.6) note the
difference in y-axis scales.
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Figure 21. Modeling the upper bound on the checkpointing interval
for no performance degradation.

Providing analytical performance bounds on the iLazy
checkpointing strategy:

We note that iLazy checkpointing technique reduces I/O over-
head significantly, however it may slightly increase the job run-
time even when the OCI is correctly estimated (Fig. 19). In some
situations, even such minimal performance loss may not be desir-
able. Therefore, we develop a mathematical model to provide no-
performance loss guarantees, at the cost of potentially decreased
reduction in I/O overhead.

The primary reason for performance loss lies in the inherent
nature of the iLazy checkpointing scheme: the checkpoint interval
becomes increasingly large. Consequently, in the cases where inter-
arrival time between failures may be considerably high, the amount
of lost work may negate the savings coming from infrequent check-
pointing. Therefore, to avoid any performance degradation, at any
given point we have to estimate if the checkpoint cost saving is
not smaller than the potential lost work. If so, the checkpoint inter-
val can not be larger than that. These trade-offs bound how large
a checkpoint interval can be. Unfortunately, estimating this at the
run time is difficult because it involves calculating the checkpoint-
ing cost saving, which in turn requires it to be compared with the
traditional OCI based scheme.

We reduce this problem to a relatively simpler case. We pro-
pose a simpler and conservative estimation of the largest possible
checkpointing interval such that no performance loss is incurred.
We focus only on how large the second checkpointing interval can
be, without degrading performance.

The proposed scenario is depicted in Fig. 21. If the second
checkpoint interval ends at t3, then we ask what is the maximum
value of t3 (resulting in the maximum allowed checkpointing in-
terval, αmax−oci) such that the potential benefit of reducing the
checkpointing cost is more than the amount of lost work compared
to the base OCI (αoci).

The amount of “additional” lost work compared to the OCI case
can be estimated in two steps: (1) calculating the probability of
failure in the time period between the end of second checkpoint in
the OCI case and the iLazy case (i.e., t2 and t4), and (2) multiplying
this probability by the additional lost work ((αmax−oci−αoci)), if
a failure did occur in this time window.
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The benefit can be estimated as one checkpointing cost saving
(β) multiplied by the probability that the failure happens beyond
time t3.
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Therefore, by solving the following inequality, we can obtain
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If the αlazy (Eq. 11) is larger than the “upper bound” of the
checkpoint interval as determined by the above equation (Eq. 14),
then the checkpoint interval is capped at αmax−oci.

Note that our estimation of the maximum value of checkpoint
interval is conservative as doing the same cost-benefit analysis at a
later point (after actually saving multiple checkpoints) is likely to
result in higher benefits. In our evaluation (Fig. 20), we found that
even this conservative estimation obtained by a first-order approx-
imate cost-benefit model can work fairly well. In our experience,
we found the trends to remain the same across different settings.
However, this analysis depends on multiple factors, such as the base
OCI, time-to checkpoint and shape parameter, therefore, a more de-
tailed model, analysis and tuning may be required in certain cases.
Our results show that the the iLazy strategy with an upper bound
retains a significant amount of the I/O reduction provided by the
base iLazy scheme, without degrading performance. We note that it
provides approx. 20% reduction in checkpoint time. In fact, it may
improve performance by a few hours as opposed to the naive iLazy
checkpointing scheme that results in slight performance degrada-
tion at low node counts (Fig. 20(c)).

Observation 9. Using probabilistic estimation, an upper bound on
the increasing checkpoint interval can be achieved to avoid per-
formance degradation for the iLazy checkpointing strategy. This
capping retains a significant amount of original checkpointing cost
savings in the presence of other varying factors, with no perfor-
mance degradation guarantee.
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nodes on the x-axis): (a) checkpoint time, (b) total time, and (c) absolute performance savings in hours. (checkpoint time = 30 minutes, k =0.6) note the
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Figure 21. Modeling the upper bound on the checkpointing interval
for no performance degradation.

Providing analytical performance bounds on the iLazy
checkpointing strategy:

We note that iLazy checkpointing technique reduces I/O over-
head significantly, however it may slightly increase the job run-
time even when the OCI is correctly estimated (Fig. 19). In some
situations, even such minimal performance loss may not be desir-
able. Therefore, we develop a mathematical model to provide no-
performance loss guarantees, at the cost of potentially decreased
reduction in I/O overhead.

The primary reason for performance loss lies in the inherent
nature of the iLazy checkpointing scheme: the checkpoint interval
becomes increasingly large. Consequently, in the cases where inter-
arrival time between failures may be considerably high, the amount
of lost work may negate the savings coming from infrequent check-
pointing. Therefore, to avoid any performance degradation, at any
given point we have to estimate if the checkpoint cost saving is
not smaller than the potential lost work. If so, the checkpoint inter-
val can not be larger than that. These trade-offs bound how large
a checkpoint interval can be. Unfortunately, estimating this at the
run time is difficult because it involves calculating the checkpoint-
ing cost saving, which in turn requires it to be compared with the
traditional OCI based scheme.

We reduce this problem to a relatively simpler case. We pro-
pose a simpler and conservative estimation of the largest possible
checkpointing interval such that no performance loss is incurred.
We focus only on how large the second checkpointing interval can
be, without degrading performance.

The proposed scenario is depicted in Fig. 21. If the second
checkpoint interval ends at t3, then we ask what is the maximum
value of t3 (resulting in the maximum allowed checkpointing in-
terval, αmax−oci) such that the potential benefit of reducing the
checkpointing cost is more than the amount of lost work compared
to the base OCI (αoci).

The amount of “additional” lost work compared to the OCI case
can be estimated in two steps: (1) calculating the probability of
failure in the time period between the end of second checkpoint in
the OCI case and the iLazy case (i.e., t2 and t4), and (2) multiplying
this probability by the additional lost work ((αmax−oci−αoci)), if
a failure did occur in this time window.

performance loss = (αmax−oci − αoci)(e
−(

t2
λ

)k
− e−(

t4
λ

)k )

= (αmax−oci − αoci)(e
−(

2(αoci+β)
λ

)k
− e−(

αmax−oci+αoci+2β

λ
)k )

(12)

Note that the probability that an event happens between time tx

and ty is given by Pr(tx, ty) = e−( tx
λ

)k − e−(
ty
λ

)k (for Weibull
distribution).

The benefit can be estimated as one checkpointing cost saving
(β) multiplied by the probability that the failure happens beyond
time t3.

performance gain = βe−(
t3
λ

)k (13)

Therefore, by solving the following inequality, we can obtain
the maximum value of t3 that guarantees no performance degrada-
tion:

βe−(
αmax−oci+αoci+β

λ
)k = (αmax−oci − αoci)e

−(
2(αoci+β)

λ
)k

−(αmax−oci − αoci)e
−(

αmax−oci+αoci+2β

λ
)k

(14)

If the αlazy (Eq. 11) is larger than the “upper bound” of the
checkpoint interval as determined by the above equation (Eq. 14),
then the checkpoint interval is capped at αmax−oci.

Note that our estimation of the maximum value of checkpoint
interval is conservative as doing the same cost-benefit analysis at a
later point (after actually saving multiple checkpoints) is likely to
result in higher benefits. In our evaluation (Fig. 20), we found that
even this conservative estimation obtained by a first-order approx-
imate cost-benefit model can work fairly well. In our experience,
we found the trends to remain the same across different settings.
However, this analysis depends on multiple factors, such as the base
OCI, time-to checkpoint and shape parameter, therefore, a more de-
tailed model, analysis and tuning may be required in certain cases.
Our results show that the the iLazy strategy with an upper bound
retains a significant amount of the I/O reduction provided by the
base iLazy scheme, without degrading performance. We note that it
provides approx. 20% reduction in checkpoint time. In fact, it may
improve performance by a few hours as opposed to the naive iLazy
checkpointing scheme that results in slight performance degrada-
tion at low node counts (Fig. 20(c)).

Observation 9. Using probabilistic estimation, an upper bound on
the increasing checkpoint interval can be achieved to avoid per-
formance degradation for the iLazy checkpointing strategy. This
capping retains a significant amount of original checkpointing cost
savings in the presence of other varying factors, with no perfor-
mance degradation guarantee.

Key is to balance the trade-off 
between reduction in checkpointing overhead 

and possible increase in the waste work 

Devesh Tiwari, Saurabh Gupta, Sudharshan Vazhkudai, "Lazy Checkpointing: Exploiting Temporal Locality in Failures to Mitigate
Checkpointing Overheads on Extreme-Scale Systems", Proceedings of the 44th Annual IEEE/IFIP Int’l Conference on Dependable 

Systems and Networks (DSN), 2014.
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Exploiting Spatial Locality for 
Improved Reliability

Quarantine Technique
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Fig. 3: Distribution of each failure-type across rows (a) and columns (b) of cabinets, normalized by the frequency of each
failure-type instead of the total number of failures to understand the characteristic of each failure-type better.
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Fig. 2: Histogram of failures across 200 cabinets (a), and across
600 cages (b), and heatmap showing the spatial distribution of
all failures across 200 cabinets physically organized as 25 rows
and 8 columns (c).

Next, we plot the spatial distribution of failure in the row-
column space of the cabinets. Fig. 2(c) shows the distribution
of failures across the cabinets based on the physical location
of the cabinet. From the figure, we can again observe that
all cabinets are not equally likely to be hit by a failure.
However, it is very challenging to accurately reason about
this non-uniform distribution since multiple factors such as
environmental, physical factors may be affecting this spatial
distribution simultaneously. We start our further discussion
by investigating how different failure-types are spatially dis-
tributed in the space.

Observation 1. The spatial distribution of failures is not
uniform. Due to an ensemble of physical characteristics of
the system, some locations may be more prone to failures than
others.

B. Spatial Distribution of Failure-types

One may question the observation from Fig. 2(c) arguing
that a few dominant failures may happen more frequently
in certain cabinets and skew the distribution of failures in

space. Therefore, in Fig. 3, we show the distribution of failures
across rows and columns for different failure-types. It has
been normalized by the number of failures of “that” type
instead of the total number of failures. This normalization
brings out the property of each failure-type better instead of
being affected by the dominant failures. We observe that nearly
all failure-types are unequally distributed in space as well.
We have attempted to correlate this unequal distribution with
power and cooling infrastructure and other facility parameters,
but there is not enough strong evidence to suggest why a
particular type of failure was distributed in a skewed manner.
However, this finding has important implications for future
fault-tolerance research. Our finding implies that large-scale
jobs may have significantly different probability of getting
interrupted by a system failure event depending on their
node allocation. System-administrators can use this kind of
information to allocate mission-critical jobs to relatively more
reliable cabinets.

Next, we investigate what happens within a cabinet? Fig. 4
shows the distribution of failures among different cage levels
inside a cabinet, blades in a cage, and nodes within a blade.
While there are no clear visible trends at the blade- and node-
level, we observe that the likelihood of failures happening in
the upper cages (cage 2) is higher. This is true for almost
all failure-types, however not for all (e.g., kernel panic).
Therefore, system administrators can also use this behavior to
prioritize mission-critical production jobs towards lower levels
of cages (cage 0 and cage 1).

Observation 2. Most of the failure-types are not equally
distributed in space. This information can be used to better
schedule a mission-critical job or to estimate the probability
of job interruption depending on job’s node allocation layout.

C. Understanding Re-occurrence Behavior of Different
Failure-types

In this section, we analyze if one failure-type is likely to
occur soon after a another failure-type. First, we understand
how this happens within the grace-period. Fig. 5(a) shows
the number of occurrences of a failure-type following another
failure-type within a 5 second grace-period. We obtained
similar results for a 300 second grace-period that we have
applied (not shown here due to space constraints). We observe
that several failure-types are reported multiple times within

3

(a) (b)

Fig. 3: Distribution of each failure-type across rows (a) and columns (b) of cabinets, normalized by the frequency of each
failure-type instead of the total number of failures to understand the characteristic of each failure-type better.
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Fig. 2: Histogram of failures across 200 cabinets (a), and across
600 cages (b), and heatmap showing the spatial distribution of
all failures across 200 cabinets physically organized as 25 rows
and 8 columns (c).

Next, we plot the spatial distribution of failure in the row-
column space of the cabinets. Fig. 2(c) shows the distribution
of failures across the cabinets based on the physical location
of the cabinet. From the figure, we can again observe that
all cabinets are not equally likely to be hit by a failure.
However, it is very challenging to accurately reason about
this non-uniform distribution since multiple factors such as
environmental, physical factors may be affecting this spatial
distribution simultaneously. We start our further discussion
by investigating how different failure-types are spatially dis-
tributed in the space.

Observation 1. The spatial distribution of failures is not
uniform. Due to an ensemble of physical characteristics of
the system, some locations may be more prone to failures than
others.

B. Spatial Distribution of Failure-types

One may question the observation from Fig. 2(c) arguing
that a few dominant failures may happen more frequently
in certain cabinets and skew the distribution of failures in

space. Therefore, in Fig. 3, we show the distribution of failures
across rows and columns for different failure-types. It has
been normalized by the number of failures of “that” type
instead of the total number of failures. This normalization
brings out the property of each failure-type better instead of
being affected by the dominant failures. We observe that nearly
all failure-types are unequally distributed in space as well.
We have attempted to correlate this unequal distribution with
power and cooling infrastructure and other facility parameters,
but there is not enough strong evidence to suggest why a
particular type of failure was distributed in a skewed manner.
However, this finding has important implications for future
fault-tolerance research. Our finding implies that large-scale
jobs may have significantly different probability of getting
interrupted by a system failure event depending on their
node allocation. System-administrators can use this kind of
information to allocate mission-critical jobs to relatively more
reliable cabinets.

Next, we investigate what happens within a cabinet? Fig. 4
shows the distribution of failures among different cage levels
inside a cabinet, blades in a cage, and nodes within a blade.
While there are no clear visible trends at the blade- and node-
level, we observe that the likelihood of failures happening in
the upper cages (cage 2) is higher. This is true for almost
all failure-types, however not for all (e.g., kernel panic).
Therefore, system administrators can also use this behavior to
prioritize mission-critical production jobs towards lower levels
of cages (cage 0 and cage 1).

Observation 2. Most of the failure-types are not equally
distributed in space. This information can be used to better
schedule a mission-critical job or to estimate the probability
of job interruption depending on job’s node allocation layout.

C. Understanding Re-occurrence Behavior of Different
Failure-types

In this section, we analyze if one failure-type is likely to
occur soon after a another failure-type. First, we understand
how this happens within the grace-period. Fig. 5(a) shows
the number of occurrences of a failure-type following another
failure-type within a 5 second grace-period. We obtained
similar results for a 300 second grace-period that we have
applied (not shown here due to space constraints). We observe
that several failure-types are reported multiple times within

3

C
ab

in
et

 
ro

w
s



Quarantine: Design Challenges
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Quarantine Technique: In Action
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Fig. 9: Impact of near future window size parameter on fraction of failures avoided (a), fraction of quarantine node hours (b).
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Fig. 10: Evaluation of Quarantine Technique with varying duration of quarantine from 1 hour to 180 hours: Fraction of failures
avoided (a), and fraction of quarantine node-hours (b).

time in quarantine mode (i.e., the loss). The simulation results
indicate that with only 0.02% loss of node-hours in quaran-
tine, 3.85% of the failures can be avoided when Quarantine
Technique is applied at node granularity. If we increase the
granularity of quarantine to blade or cage, 5.07% or 7.21%
failures can be avoided respectively. These results indicate
that with increasing granularity of quarantine, the number of
failures avoided also increases, and this again shows that the
spatial locality is not just a node-level phenomenon. Overall,
the percentage of failures avoided for each granularity closely
follows the spatial locality results in Section III-D.

Observation 5. After a failure, putting a group of spatially-
nearby nodes in quarantine can effectively exploit the spatial
locality in failures. It can prevent a significant fraction of
system failures from affecting production jobs by trading
off relatively small fraction of computational resources. The
respective benefits and overheads depend on the granularity
of quarantine.

Interesting observations can be made from Fig. 8 (b), which
shows fraction of node-hours used by debugging jobs on Titan
per day. We observe that 1.4% of the node hours are already
spent in debug jobs on average over this period. On a per day
basis, 65% of the days saw more than 0.7% node-hours of the
system used for debug jobs. In this manner, the overhead of
using the quarantine method is minimized significantly if we
schedule debug jobs on the nodes under quarantine. Moreover,
the load of debug queue can be used to decide the granularity

and duration of quarantine which can be easily tuned. Design
of such a dynamic scheme is out of the scope of this study. In
the following section, we investigate the impact of granularity
and duration of quarantine on the fraction of node hours in
quarantine and failures avoided.

Observation 6. A large fraction of quarantine node hours can
be allocated towards debug or non-production jobs. Therefore,
the compute-hours wasted due to Quarantine Technique can be
minimized significantly or even completely obviated in some
cases, depending upon the system usage.

C. Understanding the Effect of Parameters and Trade-offs

One key consideration while putting a group of nodes
in quarantine is to decide the duration of quarantine in the
“number of hours” or “number of future failures”. It may seem
that they would both work equally well for specifying duration
of quarantine because they put the nodes in quarantine for a
similar amount of time on average (given time in hours =
number of failures ⇥ MTBF ). In Fig. 9 (a) and (b), we show
that though the number of node-hours spent in quarantine stays
same for either choice of quarantine duration, the percentage of
failures avoided is significantly different. Using a time window
works significantly better than using number of failures. This
is due to temporal locality in failures, where the number of
failures that occur within a time window of ‘number of failures
⇥ MTBF’ is actually more than the number of failures [5].
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Fig. 9: Impact of near future window size parameter on fraction of failures avoided (a), fraction of quarantine node hours (b).
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Fig. 10: Evaluation of Quarantine Technique with varying duration of quarantine from 1 hour to 180 hours: Fraction of failures
avoided (a), and fraction of quarantine node-hours (b).

time in quarantine mode (i.e., the loss). The simulation results
indicate that with only 0.02% loss of node-hours in quaran-
tine, 3.85% of the failures can be avoided when Quarantine
Technique is applied at node granularity. If we increase the
granularity of quarantine to blade or cage, 5.07% or 7.21%
failures can be avoided respectively. These results indicate
that with increasing granularity of quarantine, the number of
failures avoided also increases, and this again shows that the
spatial locality is not just a node-level phenomenon. Overall,
the percentage of failures avoided for each granularity closely
follows the spatial locality results in Section III-D.

Observation 5. After a failure, putting a group of spatially-
nearby nodes in quarantine can effectively exploit the spatial
locality in failures. It can prevent a significant fraction of
system failures from affecting production jobs by trading
off relatively small fraction of computational resources. The
respective benefits and overheads depend on the granularity
of quarantine.

Interesting observations can be made from Fig. 8 (b), which
shows fraction of node-hours used by debugging jobs on Titan
per day. We observe that 1.4% of the node hours are already
spent in debug jobs on average over this period. On a per day
basis, 65% of the days saw more than 0.7% node-hours of the
system used for debug jobs. In this manner, the overhead of
using the quarantine method is minimized significantly if we
schedule debug jobs on the nodes under quarantine. Moreover,
the load of debug queue can be used to decide the granularity

and duration of quarantine which can be easily tuned. Design
of such a dynamic scheme is out of the scope of this study. In
the following section, we investigate the impact of granularity
and duration of quarantine on the fraction of node hours in
quarantine and failures avoided.

Observation 6. A large fraction of quarantine node hours can
be allocated towards debug or non-production jobs. Therefore,
the compute-hours wasted due to Quarantine Technique can be
minimized significantly or even completely obviated in some
cases, depending upon the system usage.

C. Understanding the Effect of Parameters and Trade-offs

One key consideration while putting a group of nodes
in quarantine is to decide the duration of quarantine in the
“number of hours” or “number of future failures”. It may seem
that they would both work equally well for specifying duration
of quarantine because they put the nodes in quarantine for a
similar amount of time on average (given time in hours =
number of failures ⇥ MTBF ). In Fig. 9 (a) and (b), we show
that though the number of node-hours spent in quarantine stays
same for either choice of quarantine duration, the percentage of
failures avoided is significantly different. Using a time window
works significantly better than using number of failures. This
is due to temporal locality in failures, where the number of
failures that occur within a time window of ‘number of failures
⇥ MTBF’ is actually more than the number of failures [5].
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Storage system

Scientific data analysis performed on SSD controllers
concurrently without hurting simulation performance

In-situ Data Analysis via Active 
Computation on SSDs



Enabled by increasingly multi-core controllers in SSDs

In-situ Data Analysis via Active 
Computation on SSDs

Feasibility of the approach demonstrated by prototype 
implementation on OpenSSD platform, but…

Parameter Value
Controller ARM Indilinx BarefootTM at 87.5 MHz
Host Interface SATA 2 at 3 Gbps
SDRAM 64 MB
Flash Memory 64 GB

Table 6: SSD parameters on the OpenSSD platform.

Host LBA on Flash

read / write

data analysis
requests

SSD
SSD controller

data analysis

FTL

Figure 5: Active Flash prototype.

data is written by the host to the SSD, e.g. as part of a
checkpoint operation, (b) request: data analysis request
sent in the form of write to a reserved LBA, (c) process:
the analysis kernel running on the SSD controller, read-
ing input data from internal flash (where it was written
in step (a)), (d) result: output data is written to internal
SSD storage, and the host notified via polling or comple-
tion of a pending command.

6.1 Data analysis commands

The command format is simple and general, as shown in
Figure 6, specifying an operation, a list of LBA extents,
and operation-specific options.

Data for analysis is transferred to the controller by (a)
writing to a file in the host file system, (b) flushing data
from RAM to storage, (c) translating offsets within the
file into physical LBAs, and (d) passing the sequence of
LBA extents in the analysis command. Analysis results
are returned by creating and pre-allocating a file for anal-
ysis output, then again translating file offsets to LBAs
and passing an LBA extent list to the controller.

Simple analysis requests such as the statistical ker-
nels described below (mean, max, standard deviation,
linear regression) are fully specified by the command
type; input is retrieved from the locations identified in
the extent list. A variable-length options field is available
for more sophisticated kernels like K-means clustering,
which may require additional parameters.

The analysis input typically represents a multi-
dimensional numeric array; in the current implementa-
tion this data layout is either known implicitly by the
analysis kernel or is specified in the Options field. In
practice this information is expected to be conveyed
via the use of self-describing data formats such as
NetCDF [41] or HDF5 [25]: metadata in these scientific
data storage formats include information such as array
shape and precision needed to interpret the raw data.

Command

Nextents

Options

Nextents

LBA
length

Identifies data analysis kernel

Extent list - identifies input (or output) file

Analysis kernel-specific options

Figure 6: Data analysis command format.

6.2 Scheduling I/O and data analysis tasks
As part of servicing read and write requests, SSD con-
trollers must perform a number of overhead functions,
such as garbage collection, wear leveling, bad block
management, and error correction-related tasks. Some of
these are performed at request time, while others may be
deferred to background processing. In either case, such
tasks will compete for CPU time with analysis tasks. To
minimize impact on SSD performance on our single-core
prototype, we implement a preemption-based scheme:
data analysis is interrupted when I/O requests arrive, re-
suming after they finish.

The OpenSSD-based prototype implements a simple
event loop, with CPU-bound tasks processed to comple-
tion. This preemption is performed by polling for re-
quests at periodic intervals, implemented by processing
B bytes at a time between checks. I/O requests may thus
have to wait until the current interval is finished, incur-
ring a mean delay of half that interval. Suppose TSSD k is
the throughput of the data analysis kernel k, this delay is:

Delay k =
1
2

· B
TSSD k

In our prototype B is currently set to 32 KB, the hard-
ware flash controller read size; for the analysis kernels
shown in Table 7 below, this results in a mean delay of 3
to 8 ms. When I/O service requests are received in bursts,
this delay should only be incurred once, achieving an ac-
ceptably low level of interference; on multi-core SSDs it
may be avoided entirely.

6.3 Results
The host-controller communication mechanism de-
scribed above, plus four data analysis kernels, have
been implemented in our prototype as part of the SSD
firmware. The kernels represent statistical computation
common for scientific data processing: max, mean, stan-
dard deviation and linear regression. Input for all exper-
iments consisted of 100 MB of 32-bit integers, stored on
the SSD in binary. For comparison, each kernel compu-
tation was performed on the host CPU, an AMD Phenom
9550 quad-core at 2200 MHz with 2 GB of DRAM.
Throughput: Analysis throughput is shown in Ta-
ble 7. We see that the statistical data analysis kernels
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Beyond Active Flash

AnalyzeThis testbed set-up

.anFS/alice/, and the associated POSIX ACLs protect user
files.

3.4 Provenance
AnalyzeThis tracks the lineage of the data produced as a

result of a workflow execution at very minimal cost. This al-
lows the user to utilize the intermediate data for future anal-
ysis. We have implemented provenance support on top of the
distributed database infrastructure (Figure 3) between the
storage server (workflow table, anFS wf) and AFEs (Dataset
task collection membership table, tcid oid). Recall that
anFS wf stores information about the task and the AFE on
which the task is executed; tcid oid stores the task collection
to data object mapping and will also need to be maintained
on the storage server. Upon receiving a provenance query
regarding a dataset, AnalyzeThis searches the anFS dirent
table to get the anFS inode of the file, which is used to get
the object id. The object id is then used to retrieve the task
collection id from the tcid oid table. The task collection id
is used to obtain the AFE id from the anFS wf table. Alter-
natively, if tcid oid is not maintained on the storage server
as well, we can broadcast to the AFEs to determine the task
collection id for a data object id. Further analysis of the lin-
eage is performed on that AFE. Using the task collection id
and the attribute page we get the task collection attribute
page number. Using the predefined attribute o↵set all the
information regarding the task is fetched. The task prove-
nance from multiple AFEs is merged with similar job-level
information that is maintained at the storage server in the
anFS wf table.

4. EVALUATION

4.1 Experimental Setup
Testbed: Our emulation testbed (Figure 4) is composed

of the following: (1) client desktop computer that submits
analysis workflows, (2) storage server within the AnalyzeThis
appliance, and (3) the networked machines that emulate the
AFEs (four AFEs are connected to the storage server). For
the desktop computer and the storage server, we used a 1.8
GHz Intel Xeon E5-2603 processor. We emulated the AFEs
using Atom machines with RAM disks, to mimic the flash
controller and the internal flash chips with high I/O band-
width to the controller. The Atom-based AFEs use a single
1.8 GHz Atom processor as the controller, a 3 GB RAM disk
as the flash chip, and a 1 Gbps Ethernet connection to the
storage server within the AnalyzeThis appliance. All servers
run the Linux kernel 2.6.32-279. anFS o↵ers a read and write
bandwidth of 120 MB/s and 80 MB/s, respectively.

Software: AnalyzeThis has been implemented using 10 K
lines of C code. We extended the OSD iSCSI target emu-
lator from the open-osd project [33], for the AFE target.
The task executions in an AFE are serialized by spawning
a dedicated thread, which mimics dedicating a device con-
troller for active processing. For the AFE-OSD driver in the
storage server, we extended the OSD initiator driver in the
Linux kernel. We also extended exoFS [12] to synchronize
the OSD object id space with the userspace anFS. anFS has
been implemented using FUSE [13], and it keeps track of
metadata using SQLite [48].

Scientific Workflows: We used several real-world com-
plex workflows. We used Montage [27], Brain Atlas [28],
Sipros [54], and Grep [14] workflows. The DAG representa-
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tions and the details of the workflows are shown in Figure 5
and Table 1.

The Montage workflow [27] creates a mosaic with 10 as-
tronomy images. It uses 8 analysis kernels, and is composed
of 36 tasks, several of which can be parallelized to run on
the AFEs. The Brain workflow [28] creates population-based
brain atlases from the fMRI Data Center’s archive of high
resolution anatomical data, and is part of the first prove-
nance challenge [28] used in our provenance evaluation. The
Sipros workflow runs DNA search algorithms with database
files to identify and quantify proteins and their variants from
various community proteomics studies. It consists of 12
analysis tasks, and uses three analysis kernels. The Grep
workflow counts the occurrences of ANSI C keywords in the
Linux source files.

Input Intermediate Output Total Object

(MB) (#)

Montage 51 222 153 426 113

Brain 70 155 20 245 35

Sipros 84 87 1 172 45

Grep 463 363 1 827 13

Table 1: Workflow input, output and intermediate data size.

.anFS/alice/, and the associated POSIX ACLs protect user
files.

3.4 Provenance
AnalyzeThis tracks the lineage of the data produced as a

result of a workflow execution at very minimal cost. This al-
lows the user to utilize the intermediate data for future anal-
ysis. We have implemented provenance support on top of the
distributed database infrastructure (Figure 3) between the
storage server (workflow table, anFS wf) and AFEs (Dataset
task collection membership table, tcid oid). Recall that
anFS wf stores information about the task and the AFE on
which the task is executed; tcid oid stores the task collection
to data object mapping and will also need to be maintained
on the storage server. Upon receiving a provenance query
regarding a dataset, AnalyzeThis searches the anFS dirent
table to get the anFS inode of the file, which is used to get
the object id. The object id is then used to retrieve the task
collection id from the tcid oid table. The task collection id
is used to obtain the AFE id from the anFS wf table. Alter-
natively, if tcid oid is not maintained on the storage server
as well, we can broadcast to the AFEs to determine the task
collection id for a data object id. Further analysis of the lin-
eage is performed on that AFE. Using the task collection id
and the attribute page we get the task collection attribute
page number. Using the predefined attribute o↵set all the
information regarding the task is fetched. The task prove-
nance from multiple AFEs is merged with similar job-level
information that is maintained at the storage server in the
anFS wf table.

4. EVALUATION

4.1 Experimental Setup
Testbed: Our emulation testbed (Figure 4) is composed

of the following: (1) client desktop computer that submits
analysis workflows, (2) storage server within the AnalyzeThis
appliance, and (3) the networked machines that emulate the
AFEs (four AFEs are connected to the storage server). For
the desktop computer and the storage server, we used a 1.8
GHz Intel Xeon E5-2603 processor. We emulated the AFEs
using Atom machines with RAM disks, to mimic the flash
controller and the internal flash chips with high I/O band-
width to the controller. The Atom-based AFEs use a single
1.8 GHz Atom processor as the controller, a 3 GB RAM disk
as the flash chip, and a 1 Gbps Ethernet connection to the
storage server within the AnalyzeThis appliance. All servers
run the Linux kernel 2.6.32-279. anFS o↵ers a read and write
bandwidth of 120 MB/s and 80 MB/s, respectively.

Software: AnalyzeThis has been implemented using 10 K
lines of C code. We extended the OSD iSCSI target emu-
lator from the open-osd project [33], for the AFE target.
The task executions in an AFE are serialized by spawning
a dedicated thread, which mimics dedicating a device con-
troller for active processing. For the AFE-OSD driver in the
storage server, we extended the OSD initiator driver in the
Linux kernel. We also extended exoFS [12] to synchronize
the OSD object id space with the userspace anFS. anFS has
been implemented using FUSE [13], and it keeps track of
metadata using SQLite [48].

Scientific Workflows: We used several real-world com-
plex workflows. We used Montage [27], Brain Atlas [28],
Sipros [54], and Grep [14] workflows. The DAG representa-
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tions and the details of the workflows are shown in Figure 5
and Table 1.
The Montage workflow [27] creates a mosaic with 10 as-

tronomy images. It uses 8 analysis kernels, and is composed
of 36 tasks, several of which can be parallelized to run on
the AFEs. The Brain workflow [28] creates population-based
brain atlases from the fMRI Data Center’s archive of high
resolution anatomical data, and is part of the first prove-
nance challenge [28] used in our provenance evaluation. The
Sipros workflow runs DNA search algorithms with database
files to identify and quantify proteins and their variants from
various community proteomics studies. It consists of 12
analysis tasks, and uses three analysis kernels. The Grep
workflow counts the occurrences of ANSI C keywords in the
Linux source files.

Input Intermediate Output Total Object

(MB) (#)

Montage 51 222 153 426 113

Brain 70 155 20 245 35

Sipros 84 87 1 172 45

Grep 463 363 1 827 13

Table 1: Workflow input, output and intermediate data size.

.anFS/alice/, and the associated POSIX ACLs protect user
files.

3.4 Provenance
AnalyzeThis tracks the lineage of the data produced as a

result of a workflow execution at very minimal cost. This al-
lows the user to utilize the intermediate data for future anal-
ysis. We have implemented provenance support on top of the
distributed database infrastructure (Figure 3) between the
storage server (workflow table, anFS wf) and AFEs (Dataset
task collection membership table, tcid oid). Recall that
anFS wf stores information about the task and the AFE on
which the task is executed; tcid oid stores the task collection
to data object mapping and will also need to be maintained
on the storage server. Upon receiving a provenance query
regarding a dataset, AnalyzeThis searches the anFS dirent
table to get the anFS inode of the file, which is used to get
the object id. The object id is then used to retrieve the task
collection id from the tcid oid table. The task collection id
is used to obtain the AFE id from the anFS wf table. Alter-
natively, if tcid oid is not maintained on the storage server
as well, we can broadcast to the AFEs to determine the task
collection id for a data object id. Further analysis of the lin-
eage is performed on that AFE. Using the task collection id
and the attribute page we get the task collection attribute
page number. Using the predefined attribute o↵set all the
information regarding the task is fetched. The task prove-
nance from multiple AFEs is merged with similar job-level
information that is maintained at the storage server in the
anFS wf table.

4. EVALUATION

4.1 Experimental Setup
Testbed: Our emulation testbed (Figure 4) is composed

of the following: (1) client desktop computer that submits
analysis workflows, (2) storage server within the AnalyzeThis
appliance, and (3) the networked machines that emulate the
AFEs (four AFEs are connected to the storage server). For
the desktop computer and the storage server, we used a 1.8
GHz Intel Xeon E5-2603 processor. We emulated the AFEs
using Atom machines with RAM disks, to mimic the flash
controller and the internal flash chips with high I/O band-
width to the controller. The Atom-based AFEs use a single
1.8 GHz Atom processor as the controller, a 3 GB RAM disk
as the flash chip, and a 1 Gbps Ethernet connection to the
storage server within the AnalyzeThis appliance. All servers
run the Linux kernel 2.6.32-279. anFS o↵ers a read and write
bandwidth of 120 MB/s and 80 MB/s, respectively.

Software: AnalyzeThis has been implemented using 10 K
lines of C code. We extended the OSD iSCSI target emu-
lator from the open-osd project [33], for the AFE target.
The task executions in an AFE are serialized by spawning
a dedicated thread, which mimics dedicating a device con-
troller for active processing. For the AFE-OSD driver in the
storage server, we extended the OSD initiator driver in the
Linux kernel. We also extended exoFS [12] to synchronize
the OSD object id space with the userspace anFS. anFS has
been implemented using FUSE [13], and it keeps track of
metadata using SQLite [48].

Scientific Workflows: We used several real-world com-
plex workflows. We used Montage [27], Brain Atlas [28],
Sipros [54], and Grep [14] workflows. The DAG representa-
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tions and the details of the workflows are shown in Figure 5
and Table 1.
The Montage workflow [27] creates a mosaic with 10 as-

tronomy images. It uses 8 analysis kernels, and is composed
of 36 tasks, several of which can be parallelized to run on
the AFEs. The Brain workflow [28] creates population-based
brain atlases from the fMRI Data Center’s archive of high
resolution anatomical data, and is part of the first prove-
nance challenge [28] used in our provenance evaluation. The
Sipros workflow runs DNA search algorithms with database
files to identify and quantify proteins and their variants from
various community proteomics studies. It consists of 12
analysis tasks, and uses three analysis kernels. The Grep
workflow counts the occurrences of ANSI C keywords in the
Linux source files.

Input Intermediate Output Total Object

(MB) (#)

Montage 51 222 153 426 113

Brain 70 155 20 245 35

Sipros 84 87 1 172 45

Grep 463 363 1 827 13

Table 1: Workflow input, output and intermediate data size.

.anFS/alice/, and the associated POSIX ACLs protect user
files.

3.4 Provenance
AnalyzeThis tracks the lineage of the data produced as a

result of a workflow execution at very minimal cost. This al-
lows the user to utilize the intermediate data for future anal-
ysis. We have implemented provenance support on top of the
distributed database infrastructure (Figure 3) between the
storage server (workflow table, anFS wf) and AFEs (Dataset
task collection membership table, tcid oid). Recall that
anFS wf stores information about the task and the AFE on
which the task is executed; tcid oid stores the task collection
to data object mapping and will also need to be maintained
on the storage server. Upon receiving a provenance query
regarding a dataset, AnalyzeThis searches the anFS dirent
table to get the anFS inode of the file, which is used to get
the object id. The object id is then used to retrieve the task
collection id from the tcid oid table. The task collection id
is used to obtain the AFE id from the anFS wf table. Alter-
natively, if tcid oid is not maintained on the storage server
as well, we can broadcast to the AFEs to determine the task
collection id for a data object id. Further analysis of the lin-
eage is performed on that AFE. Using the task collection id
and the attribute page we get the task collection attribute
page number. Using the predefined attribute o↵set all the
information regarding the task is fetched. The task prove-
nance from multiple AFEs is merged with similar job-level
information that is maintained at the storage server in the
anFS wf table.

4. EVALUATION

4.1 Experimental Setup
Testbed: Our emulation testbed (Figure 4) is composed

of the following: (1) client desktop computer that submits
analysis workflows, (2) storage server within the AnalyzeThis
appliance, and (3) the networked machines that emulate the
AFEs (four AFEs are connected to the storage server). For
the desktop computer and the storage server, we used a 1.8
GHz Intel Xeon E5-2603 processor. We emulated the AFEs
using Atom machines with RAM disks, to mimic the flash
controller and the internal flash chips with high I/O band-
width to the controller. The Atom-based AFEs use a single
1.8 GHz Atom processor as the controller, a 3 GB RAM disk
as the flash chip, and a 1 Gbps Ethernet connection to the
storage server within the AnalyzeThis appliance. All servers
run the Linux kernel 2.6.32-279. anFS o↵ers a read and write
bandwidth of 120 MB/s and 80 MB/s, respectively.

Software: AnalyzeThis has been implemented using 10 K
lines of C code. We extended the OSD iSCSI target emu-
lator from the open-osd project [33], for the AFE target.
The task executions in an AFE are serialized by spawning
a dedicated thread, which mimics dedicating a device con-
troller for active processing. For the AFE-OSD driver in the
storage server, we extended the OSD initiator driver in the
Linux kernel. We also extended exoFS [12] to synchronize
the OSD object id space with the userspace anFS. anFS has
been implemented using FUSE [13], and it keeps track of
metadata using SQLite [48].

Scientific Workflows: We used several real-world com-
plex workflows. We used Montage [27], Brain Atlas [28],
Sipros [54], and Grep [14] workflows. The DAG representa-
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tions and the details of the workflows are shown in Figure 5
and Table 1.
The Montage workflow [27] creates a mosaic with 10 as-

tronomy images. It uses 8 analysis kernels, and is composed
of 36 tasks, several of which can be parallelized to run on
the AFEs. The Brain workflow [28] creates population-based
brain atlases from the fMRI Data Center’s archive of high
resolution anatomical data, and is part of the first prove-
nance challenge [28] used in our provenance evaluation. The
Sipros workflow runs DNA search algorithms with database
files to identify and quantify proteins and their variants from
various community proteomics studies. It consists of 12
analysis tasks, and uses three analysis kernels. The Grep
workflow counts the occurrences of ANSI C keywords in the
Linux source files.

Input Intermediate Output Total Object

(MB) (#)

Montage 51 222 153 426 113

Brain 70 155 20 245 35

Sipros 84 87 1 172 45

Grep 463 363 1 827 13

Table 1: Workflow input, output and intermediate data size.
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Figure 2: AnalyzeThis architecture and components.

the storage server maintains in a lightweight database. The
scheduler dispatches the mini DAGs for execution on the
AFEs; AFEs form the bottom-most layer of our system,
and are capable of running analysis kernels on the device
controllers. We use an analysis object abstraction, which en-
capsulates all necessary components of an task, including
analysis kernels, input and output datasets, and the lineage
information of all the objects therein. The analysis kernels
for a given workflow is assumed to be stored as a platform-
dependent binary executable object (.so format), compiled
for specific devices as needed, which can run on the AFEs.

3.1 Analysis Encapsulation
We introduce analysis awareness in the Active Flash ar-

ray by building on our prior work on Active Flash that has
demonstrated how to run an analysis kernel on the flash
controller [5, 51]. Our goal here is to study how to overlay
an analysis object abstraction atop the Active Flash device,
both of which together form the AFE. The construction of an
AFE involves interactions with the flash hardware to expose
features that higher-level layers can exploit, communication
protocol with the storage server and flash device, and the
necessary infrastructure for analysis object semantics. An
array of AFEs serve as building blocks for AnalyzeThis.

The first step to this end is to devise a richer construct
than just files. Data formats, e.g., HDF [45, 10, 34, 53]
NetCDF [30, 21], and NeXus [31], o↵er many desirable fea-
tures such as access needs (parallel I/O, random I/O, partial
I/O, etc.), portability, processing, e�cient storage and self-
describing behavior. However, we also need a way to tie the
datasets with the analysis lifecycle in order to support fu-
ture data-intensive analysis. To address this, we extend the

concept of a basic data storage unit from traditional file(s)
to an analysis object abstraction that includes a file(s) plus
a sequence of analyses that operate on them plus the lineage
of how the file(s) were derived. Such an abstraction can be
created at a data collection-level, which may contain thou-
sands of files, e.g., climate community. The analysis data
abstraction would at least have either the analysis sequence
or the lineage of analysis tools (used to create the data) as-
sociated with the dataset during its lifetime on AnalyzeThis.
The elegance of integrating data and operations is that one
can even use this feature to record data management ac-
tivities as part of the dataset and not just analyses. For
example, we could potentially annotate the dataset with a
lifetime attribute that tells AnalyzeThis which datasets (fi-
nal or intermediate data of analysis) to retain and for how
long. The analysis object abstraction transforms the dataset
into an encapsulation that is more than just a pointer to a
byte stream; it is now an entity that lends itself to analysis.

3.1.1 Extending OSD Implementation for AFE
We realize the analysis object abstraction using the object

storage device (OSD) protocol. The OSD protocol provides
a foundation to build on, by supporting storage server to
AFE communication and by enabling an object container-
based view of the underlying storage. However, it does not
support analysis-awareness specifically. We use an open
source implementation of the OSD T10 standard, Linux
open-osd target [33], and extend it further with new fea-
tures to implement the AFEs. We refer to our version of
the OSD implementation as “AFE-OSD” (Figure 2(a)). Our
extensions are as follows: (i)Mini Workflow supports the ex-
ecution of entire branches of an analysis workflow that are
handed down by the higher-level Workflow Scheduler on the
storage server; (ii) Task Tracker tracks the status of running
tasks on the AFE; (iii) AFE Status checks the internal sta-
tus of the AFEs (e.g., load on the controller, capacity, wear-
out), and makes them available to the higher-level Workflow
Scheduler on the storage server to enable informed schedul-
ing decisions; (iv) Lineage Container captures the lineage
of the executed tasks; and (v) Lightweight Database Infras-
tructure supports the above components by cataloging the
necessary information and their associations.
Mini Workflow Engine: The AFE-OSD initiator on

the storage server submits the mini DAG to the AFE-OSD
target. The mini DAG represents a self-contained branch
of the workflow that can be processed on an AFE indepen-
dently. Each mini DAG is composed of a set of tasks. A
task is represented by an analysis kernel, and a series of in-
puts and outputs. The storage server dispatches the mini
DAGs to the AFEs using a series of ANALYZE_THIS exe-
cution commands, with metadata on the tasks. To handle
the tasks on the AFEs, we have implemented a new anal-
ysis task collection primitive in the AFE-OSD, which is an
encapsulation to integrally tie together the analysis kernel,
its inputs and outputs (Task Collection and the Task Col-
lection Attribute Page are represented in the bottom half of
Figure 3). Once the AFE receives the execution command,
it will create an analysis task collection, and insert the task
into a FIFO task queue that it maintains internally. As we
noted earlier, inputs and outputs can comprise of thousands
of files. To capture this notion, we create a linked collection
encapsulation for input and output datasets (using an exist-
ing Linked collection primitive), which denotes that a set of
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Figure 6: Comparison of AnalyzeThis round-robin, hybrid, and o✏ine-anFS. Multiple runs for each case, without much variance.

4.2 AnalyzeThis Performance
We compare o✏ine-anFS and AnalyzeThis. In o✏ine-

anFS, data analyses are performed on desktops or clusters by
pulling data from the anFS, whereas in AnalyzeThis, they
are performed on the AFE cores. In Figure 6, we show
the total runtime in terms of computation and I/O time.
We further break down the I/O time into anFS I/O and
anFS-internal I/O times (i.e., data movement between the
AFEs). Therefore, a break-down of the workflow run time
comprises of the following: (i) time to read the data from
anFS (only o✏ine-anFS incurs this cost), (ii) compute time
of the workflow on either the desktop or the AFEs, (iii) I/O
time to write the intermediate output to anFS during anal-
ysis (only for o✏ine-anFS), (iv) data shu✏ing time among
the AFEs (only for AnalyzeThis), and (v) time to write the
final analysis output to anFS. We specifically compared the
following scenarios: (i) o✏ine analysis using one client node
and anFS (o✏ine-anFS), (ii) AnalyzeThis using four Atom-
based AFEs and round-robin scheduling across the AFEs,
and (iii) AnalyzeThis-hybrid using the storage server, four
AFEs and round-robin across the AFEs.

In the Montage, Brain and Grep experiments for o✏ine-
anFS, the time to write the analysis outputs to anFS notice-
ably increases the run time (more than 20% of the run time),
while, for AnalyzeThis, the I/O time, anFS-internal I/O, is
much smaller compared to the overall run time. The run
time for o✏ine-anFS for Montage and Brain is slightly lower
than AnalyzeThis due to relatively less computing power on
the AFEs. However, as AFEs begin to have multicores in
the future, this small di↵erence is likely to be overcome. In
contrast, for Sipros and Grep, AnalyzeThis performs better
than o✏ine-anFS. This is because the tasks are memory-
bound. The results indicate that o✏ine’s performance is
heavily a↵ected by the data movement costs, whereas Ana-
lyzeThis is less impacted. Further, AnalyzeThis can free up
compute resources of desktops or clusters, enabling “true”
out-of-core data analysis.

Next, we evaluate (AnalyzeThis-Hybrid). For Montage,
AnalyzeThis-Hybrid significantly reduced the total run time
over AnalyzeThis and o✏ine-anFS. Unaligned mProjectPP
tasks (Figure 5(a)) are executed on the storage server, which
removed task stragglers. Also, more than 50% of data copies
between AFEs are reduced by executing reduce tasks on the
storage server. Similarly, for Brain, executing a single re-
duce task (softmean in Figure 5(b)) on the storage server
eliminated more than 75% of data copies, which results in
a 37% runtime reduction compared to AnalyzeThis. Sim-
ilarly, for Sipros, AnalyzeThis-hybrid is better than both
AnalyzeThis and o✏ine-anFS as it ran unaligned tasks on

the storage server.

4.3 Scheduling Performance
Here, we discuss the performance of scheduling techniques.
Impact of Scheduling Heuristics: Figure 6 com-

pares the performance of round robin (RR), input locality
(IL), minimum wait (MW), and hybrid (HY) based on AFE
utilization and data movement. Figure 7(a) compares the
sum (first bar) of the computation time of the workflow and
the data shu✏ing time among the AFEs against the AFE
utilization time (other two bars). AFE utilization is denoted
by the slowest (second bar) and the fastest (third bar) AFEs,
and the disparity between them indicates a load imbalance
across the AFEs. The smaller the di↵erence, the better the
utilization. Figure 7(b) shows the amount of data shu✏ed
between the AFEs. An optimal technique strikes a balance
between runtime, data movement, and AFE utilization.

 0

 10

 20

 30

 40

 50

 60

 70

RR IL MW HY RR IL MW HY

T
im

e
 (

S
e

c)

Montage                    Brain Atlas

Analysis+Data Shuffle among AFEs
Analysis(Compute) Max
Analysis(Compute) Min

 0

 500

 1000

 1500

 2000

 2500

 3000

RR IL MW HY

Sipros

(a) Total run-time and AFE core utilization

 0

 100

 200

 300

 400

 500

 600

RR IL MW HY RR IL MW HY RR IL MW HY

D
a

ta
 (

M
B

)

Montage                    Brain Atlas                       Sipros

Data Movement across AFEs

(b) Data movement

Figure 7: Performance of scheduling heuristics.

HY and RR show a balanced load distribution across the
AFEs with the least variability in utilization. However, RR
incurs the most data movement. IL can improve runtime by
significantly reducing data movement, however it may de-
grade the overall performance due to ine�cient load distri-
bution. IL shows higher runtimes than RR in all workflows.
In fact for IL, we observed in Montage that the slowest AFE
was assigned 21 tasks among 36 tasks; in Brain, only two
AFEs out of four executed all of the tasks; and in Sipros,
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We compare o✏ine-anFS and AnalyzeThis. In o✏ine-

anFS, data analyses are performed on desktops or clusters by
pulling data from the anFS, whereas in AnalyzeThis, they
are performed on the AFE cores. In Figure 6, we show
the total runtime in terms of computation and I/O time.
We further break down the I/O time into anFS I/O and
anFS-internal I/O times (i.e., data movement between the
AFEs). Therefore, a break-down of the workflow run time
comprises of the following: (i) time to read the data from
anFS (only o✏ine-anFS incurs this cost), (ii) compute time
of the workflow on either the desktop or the AFEs, (iii) I/O
time to write the intermediate output to anFS during anal-
ysis (only for o✏ine-anFS), (iv) data shu✏ing time among
the AFEs (only for AnalyzeThis), and (v) time to write the
final analysis output to anFS. We specifically compared the
following scenarios: (i) o✏ine analysis using one client node
and anFS (o✏ine-anFS), (ii) AnalyzeThis using four Atom-
based AFEs and round-robin scheduling across the AFEs,
and (iii) AnalyzeThis-hybrid using the storage server, four
AFEs and round-robin across the AFEs.

In the Montage, Brain and Grep experiments for o✏ine-
anFS, the time to write the analysis outputs to anFS notice-
ably increases the run time (more than 20% of the run time),
while, for AnalyzeThis, the I/O time, anFS-internal I/O, is
much smaller compared to the overall run time. The run
time for o✏ine-anFS for Montage and Brain is slightly lower
than AnalyzeThis due to relatively less computing power on
the AFEs. However, as AFEs begin to have multicores in
the future, this small di↵erence is likely to be overcome. In
contrast, for Sipros and Grep, AnalyzeThis performs better
than o✏ine-anFS. This is because the tasks are memory-
bound. The results indicate that o✏ine’s performance is
heavily a↵ected by the data movement costs, whereas Ana-
lyzeThis is less impacted. Further, AnalyzeThis can free up
compute resources of desktops or clusters, enabling “true”
out-of-core data analysis.

Next, we evaluate (AnalyzeThis-Hybrid). For Montage,
AnalyzeThis-Hybrid significantly reduced the total run time
over AnalyzeThis and o✏ine-anFS. Unaligned mProjectPP
tasks (Figure 5(a)) are executed on the storage server, which
removed task stragglers. Also, more than 50% of data copies
between AFEs are reduced by executing reduce tasks on the
storage server. Similarly, for Brain, executing a single re-
duce task (softmean in Figure 5(b)) on the storage server
eliminated more than 75% of data copies, which results in
a 37% runtime reduction compared to AnalyzeThis. Sim-
ilarly, for Sipros, AnalyzeThis-hybrid is better than both
AnalyzeThis and o✏ine-anFS as it ran unaligned tasks on
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Here, we discuss the performance of scheduling techniques.
Impact of Scheduling Heuristics: Figure 6 com-

pares the performance of round robin (RR), input locality
(IL), minimum wait (MW), and hybrid (HY) based on AFE
utilization and data movement. Figure 7(a) compares the
sum (first bar) of the computation time of the workflow and
the data shu✏ing time among the AFEs against the AFE
utilization time (other two bars). AFE utilization is denoted
by the slowest (second bar) and the fastest (third bar) AFEs,
and the disparity between them indicates a load imbalance
across the AFEs. The smaller the di↵erence, the better the
utilization. Figure 7(b) shows the amount of data shu✏ed
between the AFEs. An optimal technique strikes a balance
between runtime, data movement, and AFE utilization.
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HY and RR show a balanced load distribution across the
AFEs with the least variability in utilization. However, RR
incurs the most data movement. IL can improve runtime by
significantly reducing data movement, however it may de-
grade the overall performance due to ine�cient load distri-
bution. IL shows higher runtimes than RR in all workflows.
In fact for IL, we observed in Montage that the slowest AFE
was assigned 21 tasks among 36 tasks; in Brain, only two
AFEs out of four executed all of the tasks; and in Sipros,
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.anFS/alice/, and the associated POSIX ACLs protect user
files.

3.4 Provenance
AnalyzeThis tracks the lineage of the data produced as a

result of a workflow execution at very minimal cost. This al-
lows the user to utilize the intermediate data for future anal-
ysis. We have implemented provenance support on top of the
distributed database infrastructure (Figure 3) between the
storage server (workflow table, anFS wf) and AFEs (Dataset
task collection membership table, tcid oid). Recall that
anFS wf stores information about the task and the AFE on
which the task is executed; tcid oid stores the task collection
to data object mapping and will also need to be maintained
on the storage server. Upon receiving a provenance query
regarding a dataset, AnalyzeThis searches the anFS dirent
table to get the anFS inode of the file, which is used to get
the object id. The object id is then used to retrieve the task
collection id from the tcid oid table. The task collection id
is used to obtain the AFE id from the anFS wf table. Alter-
natively, if tcid oid is not maintained on the storage server
as well, we can broadcast to the AFEs to determine the task
collection id for a data object id. Further analysis of the lin-
eage is performed on that AFE. Using the task collection id
and the attribute page we get the task collection attribute
page number. Using the predefined attribute o↵set all the
information regarding the task is fetched. The task prove-
nance from multiple AFEs is merged with similar job-level
information that is maintained at the storage server in the
anFS wf table.

4. EVALUATION

4.1 Experimental Setup
Testbed: Our emulation testbed (Figure 4) is composed

of the following: (1) client desktop computer that submits
analysis workflows, (2) storage server within the AnalyzeThis
appliance, and (3) the networked machines that emulate the
AFEs (four AFEs are connected to the storage server). For
the desktop computer and the storage server, we used a 1.8
GHz Intel Xeon E5-2603 processor. We emulated the AFEs
using Atom machines with RAM disks, to mimic the flash
controller and the internal flash chips with high I/O band-
width to the controller. The Atom-based AFEs use a single
1.8 GHz Atom processor as the controller, a 3 GB RAM disk
as the flash chip, and a 1 Gbps Ethernet connection to the
storage server within the AnalyzeThis appliance. All servers
run the Linux kernel 2.6.32-279. anFS o↵ers a read and write
bandwidth of 120 MB/s and 80 MB/s, respectively.

Software: AnalyzeThis has been implemented using 10 K
lines of C code. We extended the OSD iSCSI target emu-
lator from the open-osd project [33], for the AFE target.
The task executions in an AFE are serialized by spawning
a dedicated thread, which mimics dedicating a device con-
troller for active processing. For the AFE-OSD driver in the
storage server, we extended the OSD initiator driver in the
Linux kernel. We also extended exoFS [12] to synchronize
the OSD object id space with the userspace anFS. anFS has
been implemented using FUSE [13], and it keeps track of
metadata using SQLite [48].

Scientific Workflows: We used several real-world com-
plex workflows. We used Montage [27], Brain Atlas [28],
Sipros [54], and Grep [14] workflows. The DAG representa-
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Figure 5: The DAGs representing the workflows.

tions and the details of the workflows are shown in Figure 5
and Table 1.
The Montage workflow [27] creates a mosaic with 10 as-

tronomy images. It uses 8 analysis kernels, and is composed
of 36 tasks, several of which can be parallelized to run on
the AFEs. The Brain workflow [28] creates population-based
brain atlases from the fMRI Data Center’s archive of high
resolution anatomical data, and is part of the first prove-
nance challenge [28] used in our provenance evaluation. The
Sipros workflow runs DNA search algorithms with database
files to identify and quantify proteins and their variants from
various community proteomics studies. It consists of 12
analysis tasks, and uses three analysis kernels. The Grep
workflow counts the occurrences of ANSI C keywords in the
Linux source files.

Input Intermediate Output Total Object

(MB) (#)

Montage 51 222 153 426 113

Brain 70 155 20 245 35

Sipros 84 87 1 172 45

Grep 463 363 1 827 13

Table 1: Workflow input, output and intermediate data size.

Isovalues on compressed simulation data with 
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