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▸ Boundary integral equations (Müller ’69, Rokhlin ’83)

τ + (D1 −D2)τ + (S1 − S2)σ = −uinc

−σ + (T 1 −T 2)τ + (D1,∗ −D2,∗)σ = −∂u
inc

∂n

or

([ I 0
0 I

] + [ D1 −D2 S2 − S1

T 1 −T 2 D2,∗ −D1,∗ ])[ τ
−σ ] = [

−uinc

−∂uinc∂n

]

▸ Discretization

(I +A)η = f
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▸ Smooth-star domain : ω = 4π, ε1 = 1, ε2 = 4, µ1 = µ2 = 1,
θinc = −π/4, 400 × 400 matrix and 12-digit accuracy
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Boundary integral equation for Helmholtz equation in 2-D

Two layers with one periodic interface (period = d)

uinc k1

∆u2 + k 2
2u2 = 0

∆u1 + k 2
1u1 = 0
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Boundary integral equation for Helmholtz equation in 2-D

Solution in each layer
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p

where

(D̃ i
V τ)(r) ∶=

1

∑
l=−1

α
l
∫
W

∂G i

∂n′
(r, r′ + ld)τ(r′) dsr′ , (S̃

i
V σ)(r) ∶=

1
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∫
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G
i (r, r′ + ld)σ(r′) dsr′ ,

(T̃ i
V τ)(r) ∶=
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V
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α
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W

∂G i

∂n
(r, r′ + ld)σ(r′) dsr′ .

φ
i
p(r) ∶=

∂G i

∂np
(r, yip) + ikiG

i (r, yip) , r ∈ Ωi , p = 1, 2 ,α = e
idk1 cosθinc
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▸ Flat surface (ε1 = 1, ε2 = 1.77(water), ω = 30, Error = 2 × 10−14)
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▸ Sine surface (ε1 = 1, ε2 = 1.77(water), ω = 30, Error = 5 × 10−13)
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▸ In 2-D, boundary integral equation methods using periodizing
scheme
→Left : J. Lai, M. Kobayashi, A. Barnett, JCP 2015
→Right : (1000 layers) M.H. Cho and A. Barnett OPEX 2015
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Fig. 8. Real part of the total field with 100 dielectric inclusions, some of which touch the walls L2 or R2, randomly distributed in a three-layered medium 
(see Example 3). The wavenumber for each particle is kp = 8, and the wavenumbers for the three layers are k1 = 5, k2 = 30 and k3 = 5. Each inclusion is a 
smoothed five-pointed star, approximately 0.4 wavelengths in size for k2.

Table 3
Convergence behavior of GMRES, the CPU time required and flux error for 100 inclusions em-
bedded in the central layer, where k2 is allowed to vary from 1 to 30 (see Example 3).

k2 Number of iterations GMRES error CPU time (sec.) Flux error

1 13 9.68e-11 18.0 8.54e-10
10 15 1.39e-11 18.9 7.52e-11
20 43 4.55e-11 26.6 4.38e-10
30 83 5.12e-11 37.8 1.02e-8

middle layer varies from 1 to 30 for the three-layered medium. In all cases, we can get 10 digits of accuracy of GMRES and 
at least 8 digits accuracy has been guaranteed in terms of flux error.

7. Conclusion

We have demonstrated an efficient new scheme to solve the quasi-periodic boundary value problem arising when a 
time-harmonic plane wave is incident on a layered periodic structure containing a large number of inclusions, as occurs in 
various composites and solar cell designs. The method is based entirely on free-space Green’s functions, using an expanded 
linear system to enforce quasi-periodicity and radiation conditions explicitly. This avoids expensive computations of the 
quasi-periodic Green’s function, yet is robust at all scattering parameters including Wood’s anomalies (where the latter fails 
to exist). We have shown high accuracies even at Wood’s anomalies, and with inclusions intersecting unit cell walls.

For the scattering between multiple inclusions, we introduce the scattering matrix for each inclusion and use it as a 
block-diagonal preconditioner, which greatly improves the conditioning of multi-particle scattering system. We also apply 
the FMM to accelerate the translation operator between the different structures. In the end, the system is solved iteratively 
by GMRES, scaling optimally (linearly) in M the number of inclusions, at fixed frequency. This claim of O(M) scaling holds 
only if the number of iterations is independent of M; however, our numerical tests suggest that any growth with M is very 
weak in our setting (see Fig. 5). Multi-particle systems with tens of thousands of unknowns are solved to around 9-digit 
accuracy on a laptop in a few minutes.

There are several possible extensions that we leave for future work. The method can easily be adapted to TM polarization, 
to complex permittivities, and to non-smooth inclusions. If higher aspect ratio unit cell regions (i.e. heights much bigger 
than the period) are needed, P can be increased, although this slows down the FMM which applies the large D matrix 
block. High aspect ratios could instead be handled by replacing the (intrinsically isotropic) J -expansions with proxy nodes 
as in [18], on oval curves. Our scheme naturally generalizes to bi-periodic structures in 3D, with the matrix A still directly 
invertible (with size of order 104) at low frequencies. Other future work includes a rigorous error analysis of the scheme.
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▸ CPU time and memory usage

Number of interfaces 1 3 10 30 100 300 1000

Matrix Filling (sec) 0.518 1.860 4.200 5.600 12.384 32.332 103.331
Schur Complement (sec) 0.028 0.058 0.299 0.644 2.263 6.525 21.037
Block Solve (sec) 0.003 0.041 0.398 0.898 2.805 8.626 26.655
Memory (MB) 18 41 83 183 608 1753 5830
Flux Error 4.8e-12 3.1e-11 2.4e-11 4.0e-11 2.2e-11 1.3e-10 9.1e-10
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▸ In 3-D, BIE for Maxwell’s equations is challenging

→ Lippmann-Schwinger type volume integral equation (VIE)
(D. Chen, W. Cai, B. Ziner, and M.H. Cho, JCP, 2016)

C ⋅ E(r) = Einc(r) − ıωµ(r)∫
Ω
dr′ıω∆ε(r′) ⋅ ḠE(r′, r),

where
C = I + LVδ ⋅∆ε(r)

and the Dyadic Green’s function

ḠE = 1

4π
(I + 1

k2
∇∇) e−ık ∣r−r

′
∣

∣r − r′∣
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D. Chen et al. / Journal of Computational Physics 321 (2016) 303–320 317

Fig. 6. Numerical solutions of VIE in a cylinder of radius 1 and height 2 with p = 7. (a) Incident wave; (b) Ex; (c) E y ; (d) Ez .

Fig. 7. Electric field (x-, y-, and z-components) in a 3 × 3 cube array.

Fig. 8. Electric field (x-, y-, and z-components) in a 3 × 3 sphere array.

In this subsection, we present the capability of our algorithm to handle multiple scatterers, either in regular or random 
distributions.

Fig. 7 displays the electric field Ex , E y , Ez in free-space where nine cubic scatterers are present. In these tests, the 
incident wave is set as

Einc
x = Einc

y = 0, Einc
z = eik(−2x+2y). (65)

Each cube has a length of 0.5 and they form a 3 × 3 array align in the x-y plane. The center of the first cube is 
(0.25, 0.25, 0.25), and the remaining cubes are placed 0.1 apart from each other. The parameters are taken as !ϵ = 4
and µ = 1. Here, 27 collocation points are used for each cube.

Fig. 8 displays the electric field Ex , E y , Ez in free-space where nine spherical scatterers are present. In these tests, the 
incident wave is set as

Einc
x = eikz, Einc

y = Einc
z = 0. (66)
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▸ Lippmann-Schwinger type Volume integral equation in
multilayered media

⌦

Einc

▸ Dyadic Green’s function ḠE → Layered media Dyadic Green’s
function ḠL

E
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▸ Layered media Green’s function using Sommerfeld integrals
and Fresnel reflection coefficients
(M.H. Cho and W. Cai, JSC 2017)

ḠL
E(r

′, r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

GP − 1
8π2ωε0ε1
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8π2ωε0ε2

(GR
2 +GT
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8π2ωε0ε3
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▸ Reflected parts (j = 1, 2)

G
R
jxx = k

2
j g

R
j,1 −

1

2
(gRj,3 + g

R
j,7) + (

1

2
ρ

2 − (y − y
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▸ Transmitted parts (j = 2, 3)
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▸ Electric field Green’s function in a 3 layer structure
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▸ Volume integral equation with layered media Green’s function
(D. Chen, M.H. Cho, and W. Cai, SISC, 2016 submitted)

C ⋅ E(r) = Einc(r) − ıωµ(r)∫
Ω
dr′ıω∆ε(r′) ⋅ ḠL

E(r
′, r),

where
C = I + LVδ ⋅∆ε(r)
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Wave scattering in layered Media

Volume integral equation for Maxwell’s equations in 3-D

▸ Volume integral equation with layered media Green’s function
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boundary. With the CPU time shown in Table 1, it is clear that we have to use the504

procedure of interpolating the Green’s function for realistic computation time.
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Fig. 8. Convergence of electric field Ep in a cubic scatterer in a layered medium. log10 errors
agains number of collocation points in one direction.

505

In an additional case where "1 = 1, "2 = "3 = 6 and Einc = iyei(�3
p

2x�3
p

2z),506

the total electric field, both inside and outside of a unit cube on top of a dielectric507

boundary is given in Fig. 9. In this case the wavelength � = 1 and the real part of508

the electric field at y = 0 for the domain (x, z) = [�1.5, 1.5]⇥ [�0.5, 2] is plotted in a509

2D contour. The dielectric boundary is marked as the blue line at z = 0.
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Fig. 9. Electric field of Ex (a), Ey (b) and Ez (c) of a unit cube on top of a dielectric boundary.

510

4.3. EM scattering for meta-materials of cubic and spherical meta-511

atoms. First we will show that the regularization scheme enhances the accuracy and512

e�ciency of calculating integral in Eq. (37) when a source point rs is outside of ⌦ but513

very close to it. In these tests, the computational domain ⌦ is taken as a cube of unit514

length and the coordinate of the source point rs is (�0.112702, 0.112702, 0.112702) and515

the coordinate of the first collocation point r11 in the cube is (0.112702, 0.112702, 0.112702).516

This is an extreme case that two cubes as ⌦ are adjacent to each other. We consider517

the integral518

(54)

0
@

g11, g12, g13

g21, g22, g23

g31, g32, g33

1
A =

Z

⌦

dr0G
⇤
E(rs, r0)�11(r

0),519
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Fig. 12. CPU time used in matrix filling process of solving the VIE solution with di↵erent
number of Gaussian points.

Fig. 13. Electric field component Ez in 10 ⇥ 10 scatterer arrays with a TE incident wave in a
half space. Left is for cubic scatterer with 27 collocation points in each and the right is for spherical
scatterer with 72 collocation points in each.

Finally, we calculate the reflection coe�cients of a meta-material in a layered555

medium. As an example, we place 10⇥10 cubes or balls array on a dielectric boundary556

with ✏1 = 1, µ1 = 1 and ✏2 = 6, µ2 = 1, respectively. Each scatterer element is 100557

nm in each dimension (cubes) or 100 nm in diameter (balls). Then the VIE is solved558

with an incident wave in TE mode559

(55) Einc = [0, e�i(kxx+kyy+kzz), 0]T , (kx, ky, kz) = k(sin ✓, 0, cos ✓),560

where ✓ is angle between the incident wave and the z-axis. Fig. 13 displays the561

electric fields in meta-atoms. The left and right figures of Fig. 13 are for cubes and562

balls with ✓ = ⇡/4, respectively.563

The scattering field is calculated on a square surface with length 1.2 mm and 5564

mm above those scatterers. The reflection coe�cient is then calculated as the inten-565

sity ratio of the scattering field and the incident wave. Fig. 14 shows the reflection566

coe�cients against the incident angle in (a) and against the wavelength in (b), re-567
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Fast Solver - Heterogenous Fast Multipole Method

Fast solver - Heterogeneous Fast Multipole Method
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Fast Solver - Heterogenous Fast Multipole Method

Fast Solver

▸ Fast Multipole Method (FMM) by Rokhlin and Greengard

N

∑
i=1

G(xj , xi)qi , j = 1,2,⋯N

→ N-body problem or Matrix vector multiplication

▸ Direct computation: O(N2)
▸ FMM: O(N) or O(N logN)
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Fast Solver - Heterogenous Fast Multipole Method

Fast Solver
▸ Integral operator for Helmholtz equation in the free-space

u(x) = ∫
∂Ω

g(x,x′)q(x′)dx′ ≈
N

∑
i=1

g(x,x′i)q(x′i)

where g(x,x′) = ı
4H
(1)
0 (k ∣x − x′∣)

Target

Source

x

(x’, q(x’))
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Fast Solver
▸ Integral operator for Helmholtz equation in the free-space

u(x) = ∫
∂Ω

g(x,x′)q(x′)dx′ ≈
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Fast Solver - Heterogenous Fast Multipole Method

▸ Graf’s Addition Theorem

Cν(w)eıνχ =
∞

∑
p=−∞

Cν+p(u)Jp(v)eıpα,

where Cν is either H
(1)
ν or Jν

�

�

u

w

v
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Fast Solver - Heterogenous Fast Multipole Method

▸ Multipole expansion

u(x) =
N

∑
i=1

ı

4
H
(1)
0 (k ∣x − x′i ∣)q(x′i) ≈

ı

4

P

∑
p=−P

αpHp(k ∣x − xc ∣)eıpθc ,

where

αp =
N

∑
j=1

qje
−ıpθjJp(kρj)

Target

Source

x

{↵p}
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Fast Solver - Heterogenous Fast Multipole Method

▸ Helmholtz equation with Impedance boundary condition
(method of image)

x

x0

xim
0

g(x,x0)

us
x0

(x)

@u

@n
� i↵u = 0

n
y = 0

ux0(x) = g(x,x0) + usx0
(x)

≡ g(x,x0) + (g(x,xim0 ) + 2ıα∫
∞

0
g(x,xim0 − sŷ)eıαsds)
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Fast Solver - Heterogenous Fast Multipole Method

▸ Helmholtz equation with Impedance boundary condition
(method of image)

x

x0

xim
0

g(x,x0)

us
x0

(x)

@u

@n
� i↵u = 0

n
y = 0

ux0(x) = g(x,x0) + usx0
(x)

≡ g(x,x0) + (g(x,xim0 ) + 2ıα∫
∞

0
g(x,xim0 − sŷ)eıαsds)
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Fast Solver - Heterogenous Fast Multipole Method

▸ N source points

Target

Source

x

xj

xjim

@u

@n
� i↵u = 0

y = 0
n

Image

u(x) =
N

∑
j=1

uxj(x)q(xj)

=
N

∑
j=1

qj(xj) (g(x,xj) + g(x,ximj ) + 2ıα∫
∞

0
g(x,ximj − sŷ)eıαsds)
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Fast Solver - Heterogenous Fast Multipole Method

Target

Source

x

@u

@n
� i↵u = 0

y = 0
n

Image

xc

xcim {↵̄p}

{↵p}

▸ Multipole expansion

u(x) ≈ i
4

P

∑
p=−P

αpHp(k ∣x − xc ∣)eıpθc

+ ı
4

P

∑
p=−P

ᾱp (Hp(k ∣x − ximc ∣)eıpθim

+2ıα∫
∞

0
Hp(k ∣x − (ximc − sŷ)∣)eıpθ̂imeıαsds) ,

where ᾱp is the complex conjugate of αp.
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Fast Solver - Heterogenous Fast Multipole Method

▸ Test problem (Uniform distribution in a unit box)

y = 0
@u

@n
� iu = 0

1

1

1

-0.5 0.5
1

2
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Fast Solver - Heterogenous Fast Multipole Method

▸ Accuracy for k = 0.1 and k = 1 with N = 10000

p Error for k = 0.1 Error for k = 1

E5 1.23 × 10−4 1.43 × 10−4

E10 2.73 × 10−6 3.81 × 10−6

E20 2.06 × 10−9 2.85 × 10−9

E30 1.19 × 10−11 1.65 × 10−11

▸ CPU time for p = 39 and k = 0.1
(Intel Xeon E5-2697 2.6Ghz with gcc, Dell 7910 workstation)

N 100 6400 10000 90000 360000 640000 810000 1000000
H-FMM time (sec) 0.01 0.67 1.19 10.92 46.58 100.85 116.03 135.05
Direct time (sec) 1.64 132.50 2199.92 6700 10732.10 16357.42
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Fast Solver - Heterogenous Fast Multipole Method

▸ CPU time in the log-log scale (linear scaling ,)
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Fast algorithm
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Conclusion

Conclusions and Summary

▸ Boundary integral equation (BIE) method for layered media

▸ EM scattering problem using volume integral equation (VIE)
method

▸ Heterogeneous fast multipole method
→ Extension to multi-layered media (on-going work)

▸ Stochastic methodology for meta-material design

▸ Some source codes
http://faculty.uml.edu/min_cho/software.html

http://faculty.uml.edu/min_cho/software.html
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Conclusion

Thank you!
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