Min Hyung Cho

Department of Mathematical Sciences University of Massachusetts Lowell

Joint work with Jingfang Huang at UNC, Alex Barnett at Dartmouth College/Simons Foundation, Duan Chen and Wei Cai at UNC Charlotte

Fast computational method for wave scattering \sqcup_{Outline}

Introduction

Wave scattering in layered Media

Boundary integral equation for Helmholtz equation in 2-D Volume integral equation for Maxwell's equations in 3-D

Fast Solver - Heterogenous Fast Multipole Method

Conclusion

3

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Boundary value problem

・ロト ・四ト ・ヨト ・ヨト 三日

Boundary value problem

Helmholtz equations

$$\Delta u_1 + k_1^2 u_1 = 0$$

$$\Delta u_2 + k_2^2 u_2 = 0$$

・ロト ・個ト ・モト ・モト

æ

Boundary value problem

Helmholtz equations

$$\Delta u_1 + k_1^2 u_1 = 0 \Delta u_2 + k_2^2 u_2 = 0$$

Interface conditions on $\partial \Omega$

$$u_1 + u^{inc} = u_2$$
$$\frac{\partial u_1}{\partial \mathbf{n}} + \frac{\partial u^{inc}}{\partial \mathbf{n}} = \frac{\partial u_2}{\partial \mathbf{n}}$$

・ロト ・ 日 ト ・ モ ト ・ モ ト

æ

Boundary value problem

Helmholtz equations

$$\Delta u_1 + k_1^2 u_1 = 0 \Delta u_2 + k_2^2 u_2 = 0$$

Interface conditions on $\partial \Omega$

$$u_1 + u^{inc} = u_2$$
$$\frac{\partial u_1}{\partial \mathbf{n}} + \frac{\partial u^{inc}}{\partial \mathbf{n}} = \frac{\partial u_2}{\partial \mathbf{n}}$$

Sommerfeld radiation condition

$$\lim_{r\to\infty}\sqrt{r}(\frac{\partial u_1}{\partial r}-\imath k_1u_1)=0$$

・ロト ・聞ト ・ヨト ・ヨト

э

Boundary integral equation

Boundary integral equation

• Solutions in $\mathbb{R}^2 \setminus \Omega$ and Ω (Potential theory)

(日)、

æ

• Solutions in $\mathbb{R}^2 \setminus \Omega$ and Ω (Potential theory)

$$u_{1}(\mathbf{r}) = \int_{\partial\Omega} \frac{\partial G^{1}}{\partial \mathbf{n}'}(\mathbf{r},\mathbf{r}')\tau(\mathbf{r}')ds'_{\mathbf{r}} + \int_{\partial\Omega} G^{1}(\mathbf{r},\mathbf{r}')\sigma(\mathbf{r}')ds'_{\mathbf{r}} \quad \text{for } \mathbf{r} \in \mathbb{R}^{2} \setminus \Omega$$

$$u_{2}(\mathbf{r}) = \int_{\partial\Omega} \frac{\partial G^{2}}{\partial \mathbf{n}'}(\mathbf{r},\mathbf{r}')\tau(\mathbf{r}')ds'_{\mathbf{r}} + \int_{\partial\Omega} G^{2}(\mathbf{r},\mathbf{r}')\sigma(\mathbf{r}')ds'_{\mathbf{r}} \quad \text{for } \mathbf{r} \in \Omega,$$

where

$$G^{i}(\mathbf{r},\mathbf{r}') = \frac{i}{4} \underbrace{H_{0}^{(1)}(k_{i}|\mathbf{r}-\mathbf{r}'|)}_{\text{Hankel function}}$$

Hankel function

 $k_2^{\varepsilon_2, \mu_2}$ $k_2 = \omega \sqrt{\varepsilon_2 \mu_2}$

 $u_1 + u^{inc} = u_2$ and $\frac{\partial u_1}{\partial \mathbf{n}} + \frac{\partial \overline{u^{inc}}}{\partial \mathbf{n}} = \frac{\partial u_2}{\partial \mathbf{n}}$ $\lim_{r \to \infty} \sqrt{r} \left(\frac{\partial u_1}{\partial r} - ik_1 u_1 \right) = 0$

 ε_1, μ_1 $k_1 = \omega \sqrt{\varepsilon_1 \mu_1}$

 $\Delta u_1 + k_1^2 u_1 = 0$

Boundary integral equation • Solutions in $\mathbb{R}^2 \setminus \Omega$ and Ω $u_1(\mathbf{r}) = (D^1 \tau)(\mathbf{r}) + (S^1 \sigma)(\mathbf{r}) \text{ for } \mathbf{r} \in \mathbb{R}^2 \setminus \Omega,$ $u_2(\mathbf{r}) = (D^2 \tau)(\mathbf{r}) + (S^2 \sigma)(\mathbf{r})$ for $\mathbf{r} \in \Omega$,

where

$$(D^{i}\tau)(\mathbf{r}) = \int_{\partial\Omega} \frac{\partial G^{i}}{\partial \mathbf{n}'}(\mathbf{r},\mathbf{r}')\tau(\mathbf{r}')ds'_{\mathbf{r}},$$

$$(S^{i}\sigma)(\mathbf{r}) = \int_{\partial\Omega} G^{i}(\mathbf{r},\mathbf{r}')\sigma(\mathbf{r}')ds'_{\mathbf{r}}.$$

 ε_1, μ_1 $k_1 = \omega \sqrt{\varepsilon_1 \mu_1}$

 $\Delta u_1 + k_1^2 u_1 = 0$

 $u_1 + u^{inc} = u_2$ and $\frac{\partial u_1}{\partial \mathbf{n}} + \frac{\partial u^{inc}}{\partial \mathbf{n}} = \frac{\partial u_2}{\partial \mathbf{n}}$ $\lim_{\mathbf{n} \to 0} (\frac{\partial u_1}{\partial \mathbf{n}} - ik_1u_1) = 0$

Boundary integral equation

• Matching interface conditions on $\partial \Omega$

(日) (個) (目) (目) (目) (目)

Boundary integral equation

- \blacktriangleright Matching interface conditions on $\partial \Omega$
- Let $\mathbf{r} \to \mathbf{x} \in \partial \Omega$

Boundary integral equation

 \blacktriangleright Matching interface conditions on $\partial \Omega$

• Let
$$\mathbf{r} \to \mathbf{x} \in \partial \Omega$$

$$\begin{array}{c} 0\\ k_1=\omega\sqrt{c_1\mu_1}\\ \Delta u_1+k_2^2u_1=0\\ \Delta u_1+k_2^2u_1=0\\ u_1+u^{c_2}u_1=0\\ u_1+u^{c_2}u_1=0\\ \mu_1^{c_2}(\frac{\partial u_1}{\partial r}-u_2)u_1=0 \end{array}$$

$$u_1(\mathbf{x}) = \frac{1}{2}\tau(\mathbf{x}) + (D^1\tau)(\mathbf{x}) + (S^1\sigma)(\mathbf{x}),$$

$$u_2(\mathbf{x}) = -\frac{1}{2}\tau(\mathbf{x}) + (D^2\tau)(\mathbf{x}) + (S^2\sigma)(\mathbf{x}),$$

- Matching interface conditions on $\partial \Omega$
- Let $\mathbf{r} \to \mathbf{x} \in \partial \Omega$

$$\begin{array}{c} u^{\text{there}} & u^{\text{there}} \\ & 0 \\ & k_2 = \omega \sqrt{\epsilon_1 \mu_1} \\ & k_1 = \omega \sqrt{\epsilon_1 \mu_1} \\ & k_1 = \omega \sqrt{\epsilon_1 \mu_1} \\ & \lambda u_1 + k_1^2 u_1 = 0 \\ & u_1 + k_1^2 u_1 = 0 \\ & u_1 = \frac{\partial u_1}{\partial n} + \frac{\partial u^{\text{there}}}{\partial n} = \frac{\partial u_1}{\partial n} \\ & \lim_{l \to \infty} \left(\frac{\partial u_l}{\partial r} - k_{l,lll} \right) = 0 \end{array}$$

$$u_{1}(\mathbf{x}) = \frac{1}{2}\tau(\mathbf{x}) + (D^{1}\tau)(\mathbf{x}) + (S^{1}\sigma)(\mathbf{x}),$$

$$u_{2}(\mathbf{x}) = -\frac{1}{2}\tau(\mathbf{x}) + (D^{2}\tau)(\mathbf{x}) + (S^{2}\sigma)(\mathbf{x}),$$

$$\frac{\partial u_{1}}{\partial \mathbf{n}}(\mathbf{x}) = \frac{\partial}{\partial \mathbf{n}}(D^{1}\tau)(\mathbf{x}) - \frac{1}{2}\sigma(\mathbf{x}) + \frac{\partial}{\partial \mathbf{n}}(S^{1}\sigma)(\mathbf{x}),$$

$$\frac{\partial u_{2}}{\partial \mathbf{n}}(\mathbf{x}) = \frac{\partial}{\partial \mathbf{n}}(D^{2}\tau)(\mathbf{x}) + \frac{1}{2}\sigma(\mathbf{x}) + \frac{\partial}{\partial \mathbf{n}}(S^{2}\sigma)(\mathbf{x}).$$

- \blacktriangleright Matching interface conditions on $\partial \Omega$
- Let $\mathbf{r} \to \mathbf{x} \in \partial \Omega$

$$\begin{array}{c} a^{(m)} & a^{(m)} \\ & & a^{(m)} \\ & & b^{(m)} \\ & &$$

$$u_{1}(\mathbf{x}) = \frac{1}{2}\tau(\mathbf{x}) + (D^{1}\tau)(\mathbf{x}) + (S^{1}\sigma)(\mathbf{x}),$$

$$u_{2}(\mathbf{x}) = -\frac{1}{2}\tau(\mathbf{x}) + (D^{2}\tau)(\mathbf{x}) + (S^{2}\sigma)(\mathbf{x}),$$

$$\frac{\partial u_{1}}{\partial \mathbf{n}}(\mathbf{x}) = (T^{1}\tau)(\mathbf{x}) - \frac{1}{2}\sigma(\mathbf{x}) + (D^{1,*}\sigma)(\mathbf{x}),$$

$$\frac{\partial u_{2}}{\partial \mathbf{n}}(\mathbf{x}) = (T^{2}\tau)(\mathbf{x}) + \frac{1}{2}\sigma(\mathbf{x}) + (D^{2,*}\sigma)(\mathbf{x}).$$

- Interface Conditions on $\partial \Omega$

$$u_1 + u^{inc} = u_2$$
$$\frac{\partial u_1}{\partial \mathbf{n}} + \frac{\partial u^{inc}}{\partial \mathbf{n}} = \frac{\partial u_2}{\partial \mathbf{n}}$$

- Interface Conditions on $\partial \Omega$

$$\frac{\underline{u_1} + u^{inc}}{\underline{\partial u_1}} = \frac{\underline{u_2}}{\underline{\partial n}}$$
$$\frac{\partial u_1}{\partial \mathbf{n}} = \frac{\partial u_2}{\underline{\partial n}}$$

- Interface Conditions on $\partial \Omega$

$$\frac{\frac{1}{2}\tau + D^{1}\tau + S^{1}\sigma}{\frac{1}{2}\tau + D^{1,*}\sigma} + \frac{u^{inc}}{\partial \mathbf{n}} = \frac{-\frac{1}{2}\tau + D^{2}\tau + S^{2}\sigma}{T^{2}\tau + \frac{1}{2}\sigma + D^{2,*}\sigma}$$

Boundary integral equations

Boundary integral equations (Müller '69, Rokhlin '83)

$$\tau + (D^{1} - D^{2})\tau + (S^{1} - S^{2})\sigma = -u^{inc}$$
$$-\sigma + (T^{1} - T^{2})\tau + (D^{1,*} - D^{2,*})\sigma = -\frac{\partial u^{inc}}{\partial \mathbf{n}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Boundary integral equations

Boundary integral equations (Müller '69, Rokhlin '83)

$$\tau + (D^{1} - D^{2})\tau + (S^{1} - S^{2})\sigma = -u^{inc}$$
$$-\sigma + (T^{1} - T^{2})\tau + (D^{1,*} - D^{2,*})\sigma = -\frac{\partial u^{inc}}{\partial \mathbf{n}}$$

or

$$\left(\left[\begin{array}{cc} I & 0 \\ 0 & I \end{array} \right] + \left[\begin{array}{cc} D^1 - D^2 & S^2 - S^1 \\ T^1 - T^2 & D^{2,*} - D^{1,*} \end{array} \right] \right) \left[\begin{array}{c} \tau \\ -\sigma \end{array} \right] = \left[\begin{array}{c} -u^{inc} \\ -\frac{\partial u^{inc}}{\partial \mathbf{n}} \end{array} \right]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Boundary integral equations

Boundary integral equations (Müller '69, Rokhlin '83)

$$\tau + (D^{1} - D^{2})\tau + (S^{1} - S^{2})\sigma = -u^{inc}$$
$$-\sigma + (T^{1} - T^{2})\tau + (D^{1,*} - D^{2,*})\sigma = -\frac{\partial u^{inc}}{\partial \mathbf{n}}$$

or

$$\left(\left[\begin{array}{cc} I & 0 \\ 0 & I \end{array} \right] + \left[\begin{array}{cc} D^1 - D^2 & S^2 - S^1 \\ T^1 - T^2 & D^{2,*} - D^{1,*} \end{array} \right] \right) \left[\begin{array}{c} \tau \\ -\sigma \end{array} \right] = \left[\begin{array}{c} -u^{inc} \\ -\frac{\partial u^{inc}}{\partial \mathbf{n}} \end{array} \right]$$

Discretization

$$(I + A)\eta = \mathbf{f}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Fast computational method for wave scattering $\hfill \square$ Introduction

Smooth-star domain : $\omega = 4\pi$, $\varepsilon_1 = 1$, $\varepsilon_2 = 4$, $\mu_1 = \mu_2 = 1$, $\theta^{inc} = -\pi/4$, 400 × 400 matrix and 12-digit accuracy

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Fast computational method for wave scattering $\hfill \square$ Introduction

• Smooth-star domain : $\omega = 4\pi$, $\varepsilon_1 = 1$, $\varepsilon_2 = 4$, $\mu_1 = \mu_2 = 1$, $\theta^{inc} = -\pi/4$, 400 × 400 matrix and 12-digit accuracy

Wave scattering in layered Media

Wave scattering in layered Media

Fast computational method for wave scattering └─ Wave scattering in layered Media

Layered media

Wave scattering in layered Media

Boundary integral equation for Helmholtz equation in 2-D

Two layers with one periodic interface (period = d)

 $k_2 = \Delta u_2 + k_2^2 u_2 = 0$

(日)、

э

Wave scattering in layered Media

Boundary integral equation for Helmholtz equation in 2-D

Two layers with one periodic interface (period = d)

Wave scattering in layered Media

Boundary integral equation for Helmholtz equation in 2-D

Two layers with one periodic interface (period = d)

-Wave scattering in layered Media

Boundary integral equation for Helmholtz equation in 2-D

Solution in each layer

<ロト <回ト < 注ト < 注ト

Wave scattering in layered Media

-Boundary integral equation for Helmholtz equation in 2-D

Solution in each layer

イロト イ押ト イヨト イヨト

Wave scattering in layered Media

-Boundary integral equation for Helmholtz equation in 2-D

Solution in each layer

where

$$\begin{split} (\tilde{D}_{V}^{i}\tau)(\mathbf{r}) &\coloneqq \sum_{l=-1}^{1} \alpha^{l} \int_{W} \frac{\partial G^{i}}{\partial \mathbf{n}'} (\mathbf{r}, \mathbf{r}' + l\mathbf{d}) \tau(\mathbf{r}') \ d\mathbf{s}_{\mathbf{r}'} \ , \ (\tilde{S}_{V}^{i}\sigma)(\mathbf{r}) &\coloneqq \sum_{l=-1}^{1} \alpha^{l} \int_{W} G^{i}(\mathbf{r}, \mathbf{r}' + l\mathbf{d}) \sigma(\mathbf{r}') \ d\mathbf{s}_{\mathbf{r}'} \ , \\ (\tilde{T}_{V}^{i}\tau)(\mathbf{r}) &\coloneqq \sum_{l=-1}^{1} \alpha^{l} \int_{W} \frac{\partial^{2} G^{i}}{\partial \mathbf{n} \partial \mathbf{n}'} (\mathbf{r}, \mathbf{r}' + l\mathbf{d}) \tau(\mathbf{r}') \ d\mathbf{s}_{\mathbf{r}'} \ , \ (\tilde{D}_{V}^{i,*}\sigma)(\mathbf{r}) &\coloneqq \sum_{l=-1}^{1} \alpha^{l} \int_{W} \frac{\partial G^{i}}{\partial \mathbf{n}} (\mathbf{r}, \mathbf{r}' + l\mathbf{d}) \sigma(\mathbf{r}') \ d\mathbf{s}_{\mathbf{r}'} \ . \end{split}$$

$$\phi_p^i(\mathbf{r}) \ := \ \frac{\partial G^i}{\partial \mathbf{n}_p} (\mathbf{r}, \mathbf{y}_p^i) + ik_i G^i(\mathbf{r}, \mathbf{y}_p^i) \ , \ \mathbf{r} \in \Omega_i \ , p = 1, 2 \ , \alpha = e^{idk_1 \cos \theta^{inc}}$$

Wave scattering in layered Media

Boundary integral equation for Helmholtz equation in 2-D

Boundary integral equations

$$\begin{split} u_1(\mathbf{r}) &= \tilde{D}_{\Omega_1}^1 \tau + \tilde{S}_{\Omega_1}^1 \sigma + \sum_{p=1}^P c_p^1 \phi_p^1 \\ u_2(\mathbf{r}) &= \tilde{D}_{\Omega_2}^2 \tau + \tilde{S}_{\Omega_2}^2 \sigma + \sum_{p=1}^P c_p^2 \phi_p^2 \end{split}$$

Wave scattering in layered Media

Boundary integral equation for Helmholtz equation in 2-D

Boundary integral equations

$$\begin{split} u_1(\mathbf{r}) &= \tilde{D}_{\Omega_1}^1 \tau + \tilde{S}_{\Omega_1}^1 \sigma + \sum_{p=1}^P c_p^1 \phi_p^1 \\ u_2(\mathbf{r}) &= \tilde{D}_{\Omega_2}^2 \tau + \tilde{S}_{\Omega_2}^2 \sigma + \sum_{p=1}^P c_p^2 \phi_p^2 \end{split}$$

• Interface conditions

Wave scattering in layered Media

Boundary integral equation for Helmholtz equation in 2-D

Boundary integral equations

$$\begin{split} u_1(\mathbf{r}) &= \tilde{D}_{\Omega_1}^1 \tau + \tilde{S}_{\Omega_1}^1 \sigma + \sum_{p=1}^P c_p^1 \phi_p^1 \\ u_2(\mathbf{r}) &= \tilde{D}_{\Omega_2}^2 \tau + \tilde{S}_{\Omega_2}^2 \sigma + \sum_{p=1}^P c_p^2 \phi_p^2 \end{split}$$

- Interface conditions
- Quasi-periodicity $u|_L - \alpha u|_R = 0$ $u_n|_L - \alpha u_n|_R = 0$

Wave scattering in layered Media

Boundary integral equation for Helmholtz equation in 2-D

Boundary integral equations

$$u_1(\mathbf{r}) = \tilde{D}_{\Omega_1}^1 \tau + \tilde{S}_{\Omega_1}^1 \sigma + \sum_{p=1}^P c_p^1 \phi_p^1$$
$$u_2(\mathbf{r}) = \tilde{D}_{\Omega_2}^2 \tau + \tilde{S}_{\Omega_2}^2 \sigma + \sum_{p=1}^P c_p^2 \phi_p^2$$

- Interface conditions
- Quasi-periodicity $u|_L - \alpha u|_R = 0$ $u_n|_L - \alpha u_n|_R = 0$
- Radiation condition (Rayleigh-Bloch Expansion)

Wave scattering in layered Media

Boundary integral equation for Helmholtz equation in 2-D

Boundary integral equations

$$u_1(\mathbf{r}) = \tilde{D}_{\Omega_1}^1 \tau + \tilde{S}_{\Omega_1}^1 \sigma + \sum_{p=1}^P c_p^1 \phi_p^1$$
$$u_2(\mathbf{r}) = \tilde{D}_{\Omega_2}^2 \tau + \tilde{S}_{\Omega_2}^2 \sigma + \sum_{p=1}^P c_p^2 \phi_p^2$$

- Interface conditions
- Quasi-periodicity $u|_L - \alpha u|_R = 0$ $u_n|_L - \alpha u_n|_R = 0$
- Radiation condition (Rayleigh-Bloch Expansion)

$$\rightarrow \left[\begin{array}{ccc} \mathbf{A} & \mathbf{B} & \mathbf{0} \\ \mathbf{C} & \mathbf{Q} & \mathbf{0} \\ \mathbf{Z} & \mathbf{V} & \mathbf{W} \end{array} \right] \left[\begin{array}{c} \eta \\ \mathbf{c} \\ \mathbf{a} \end{array} \right] = \left[\begin{array}{c} \mathbf{f} \\ \mathbf{0} \\ \mathbf{0} \end{array} \right]$$

-Wave scattering in layered Media

Boundary integral equation for Helmholtz equation in 2-D

Flat surface ($\varepsilon_1 = 1$, $\varepsilon_2 = 1.77$ (water), $\omega = 30$, Error $= 2 \times 10^{-14}$)

Wave scattering in layered Media

Boundary integral equation for Helmholtz equation in 2-D

Flat surface ($\varepsilon_1 = 1$, $\varepsilon_2 = 1.77$ (water), $\omega = 30$, Error $= 2 \times 10^{-14}$)

Reflected+Transmitted wave

-Wave scattering in layered Media

Boundary integral equation for Helmholtz equation in 2-D

Flat surface ($\varepsilon_1 = 1$, $\varepsilon_2 = 1.77$ (water), $\omega = 30$, Error $= 2 \times 10^{-14}$)

Wave scattering in layered Media

Boundary integral equation for Helmholtz equation in 2-D

• Sine surface ($\varepsilon_1 = 1$, $\varepsilon_2 = 1.77$ (water), $\omega = 30$, Error $= 5 \times 10^{-13}$)

Wave scattering in layered Media

Boundary integral equation for Helmholtz equation in 2-D

• Sine surface ($\varepsilon_1 = 1$, $\varepsilon_2 = 1.77$ (water), $\omega = 30$, Error $= 5 \times 10^{-13}$)

Reflected+Transmitted wave

-Wave scattering in layered Media

Boundary integral equation for Helmholtz equation in 2-D

• Sine surface ($\varepsilon_1 = 1$, $\varepsilon_2 = 1.77$ (water), $\omega = 30$, Error $= 5 \times 10^{-13}$)

Fast computational method for wave scattering └──Wave scattering in layered Media └──Boundary integral equation for Helmholtz equation in 2-D

- In 2-D, boundary integral equation methods using periodizing scheme
 - →Left : J. Lai, M. Kobayashi, A. Barnett, JCP 2015
 - \rightarrow Right : (1000 layers) M.H. Cho and A. Barnett OPEX 2015

Wave scattering in layered Media

Boundary integral equation for Helmholtz equation in 2-D

CPU time and memory usage

Number of interfaces	1	3	10	30	100	300	1000
Matrix Filling (sec)	0.518	1.860	4.200	5.600	12.384	32.332	103.331
Schur Complement (sec)	0.028	0.058	0.299	0.644	2.263	6.525	21.037
Block Solve (sec)	0.003	0.041	0.398	0.898	2.805	8.626	26.655
Memory (MB)	18	41	83	183	608	1753	5830
Flux Error	4.8e-12	3.1e-11	2.4e-11	4.0e-11	2.2e-11	1.3e-10	9.1e-10

Wave scattering in layered Media

└─Volume integral equation for Maxwell's equations in 3-D

In 3-D, BIE for Maxwell's equations is challenging

Fast computational method for wave scattering └──Wave scattering in layered Media └──Volume integral equation for Maxwell's equations in 3-D

In 3-D, BIE for Maxwell's equations is challenging
 → Lippmann-Schwinger type volume integral equation (VIE)
 (D. Chen, W. Cai, B. Ziner, and M.H. Cho, JCP, 2016)

$$\mathbf{C} \cdot \mathbf{E}(\mathbf{r}) = \mathbf{E}^{inc}(\mathbf{r}) - \imath \omega \mu(\mathbf{r}) \int_{\Omega} d\mathbf{r}' \imath \omega \Delta \varepsilon(\mathbf{r}') \cdot \bar{\mathbf{G}}_{E}(\mathbf{r}',\mathbf{r}),$$

where

$$\mathsf{C} = \mathsf{I} + \mathsf{L}_{V_{\delta}} \cdot \Delta \varepsilon(\mathsf{r})$$

and the Dyadic Green's function

$$\mathbf{\tilde{S}}_{E} = \frac{1}{4\pi} \left(\mathbf{I} + \frac{1}{k^{2}} \nabla \nabla \right) \frac{e^{-ik|\mathbf{r} - \mathbf{r}'|}}{|\mathbf{r} - \mathbf{r}'|}$$

 \mathbf{E}^{inc}

э

Wave scattering in layered Media

└─Volume integral equation for Maxwell's equations in 3-D

Wave scattering in layered Media

Volume integral equation for Maxwell's equations in 3-D

Wave scattering in layered Media

Volume integral equation for Maxwell's equations in 3-D

 Lippmann-Schwinger type Volume integral equation in multilayered media

Wave scattering in layered Media

Volume integral equation for Maxwell's equations in 3-D

 Lippmann-Schwinger type Volume integral equation in multilayered media

• Dyadic Green's function $\bar{\mathbf{G}}_E \rightarrow$ Layered media Dyadic Green's function $\bar{\mathbf{G}}_E^L$

Wave scattering in layered Media

Volume integral equation for Maxwell's equations in 3-D

 Layered media Green's function using Sommerfeld integrals and Fresnel reflection coefficients (M.H. Cho and W. Cai, JSC 2017)

$$\bar{\mathbf{G}}_{E}^{L}(\mathbf{r}',\mathbf{r}) = \begin{cases} \mathbf{G}^{P} - \frac{1}{8\pi^{2}\omega\varepsilon_{0}\varepsilon_{1}}\mathbf{G}_{1}^{R}, & z \ge 0\\ -\frac{1}{8\pi^{2}\omega\varepsilon_{0}\varepsilon_{2}}\left(\mathbf{G}_{2}^{R} + \mathbf{G}_{2}^{T}\right), & -d \le z < 0\\ -\frac{1}{8\pi^{2}\omega\varepsilon_{0}\varepsilon_{3}}\mathbf{G}_{3}^{T}, & z < -d \end{cases}$$

Wave scattering in layered Media

۲

 \square Volume integral equation for Maxwell's equations in 3-D

Reflected parts
$$(j = 1, 2)$$

 $G_{jxx}^{R} = k_{j}^{2} g_{j,1}^{R} - \frac{1}{2} (g_{j,3}^{R} + g_{j,7}^{R}) + (\frac{1}{2} \rho^{2} - (y - y')^{2}) g_{j,2}^{R}$
 $G_{jyy}^{R} = k_{j}^{2} g_{j,1}^{R} - \frac{1}{2} (g_{j,3}^{R} + g_{j,7}^{R}) + (\frac{1}{2} \rho^{2} - (x - x')^{2}) g_{j,2}^{R}$
 $G_{jxz}^{R} = -g_{j,3}^{R}$
 $G_{jxy}^{R} = G_{jyx}^{R} = (x - x')(y - y') g_{j,2}^{R}$
 $G_{jxz}^{R} = -G_{jxx}^{R} = -i(x - x') g_{j,6}^{R}, G_{jyz}^{R} = -G_{jzy}^{R} = -i(y - y') g_{j,6}^{R},$

Transmitted parts
$$(j = 2, 3)$$

 $G_{jkx}^{T} = k_{j}^{2}g_{j,1}^{T} - \frac{1}{2}g_{j,3}^{T} + \left(\frac{1}{2}\rho^{2} - (y - y')^{2}\right)g_{j,2}^{T}$
 $G_{jky}^{T} = k_{j}^{2}g_{j,1}^{T} - \frac{1}{2}g_{j,3}^{T} + \left(\frac{1}{2}\rho^{2} - (x - x')^{2}\right)g_{j,2}^{T}$,
 $G_{jzz}^{T} = g_{j,4}^{T}$,
 $G_{jky}^{T} = G_{jjx}^{T} = (x - x')(y - y')g_{j,2}^{T}$
 $G_{jkz}^{T} = i(x - x')g_{j,6}^{T}, G_{jyz}^{T} = i(y - y')g_{j,6}^{T}$,
 $G_{jxz}^{T} = i(x - x')g_{j,9}^{T}, G_{jzy}^{T} = i(y - y')g_{j,9}^{T}$,

where

$$g^{R,T} = 2\pi \int_0^\infty k_s^{n+1} \tilde{g} \frac{J_n(k_s \rho)}{\rho^n} e^{\pm i k_z (z+z')} dk_s \text{ and } \tilde{g} = \tilde{g}(k_s)$$

Wave scattering in layered Media

Volume integral equation for Maxwell's equations in 3-D

Electric field Green's function in a 3 layer structure

Wave scattering in layered Media

└─Volume integral equation for Maxwell's equations in 3-D

 Volume integral equation with layered media Green's function (D. Chen, M.H. Cho, and W. Cai, SISC, 2016 submitted)

$$\mathbf{C} \cdot \mathbf{E}(\mathbf{r}) = \mathbf{E}^{inc}(\mathbf{r}) - \imath \omega \mu(\mathbf{r}) \int_{\Omega} d\mathbf{r}' \imath \omega \Delta \varepsilon(\mathbf{r}') \cdot \overline{\mathbf{G}}_{E}^{L}(\mathbf{r}',\mathbf{r}),$$

where

$$\mathbf{C} = \mathbf{I} + \mathbf{L}_{V_{\delta}} \cdot \Delta \varepsilon(\mathbf{r})$$

3

・ロット (雪) () () () ()

Wave scattering in layered Media

└─Volume integral equation for Maxwell's equations in 3-D

Volume integral equation with layered media Green's function

Fast Solver - Heterogenous Fast Multipole Method

Fast solver - Heterogeneous Fast Multipole Method

э

・ロト ・聞ト ・ヨト ・ヨト

Fast Solver - Heterogenous Fast Multipole Method

Fast Solver

Fast Multipole Method (FMM) by Rokhlin and Greengard

$$\sum_{i=1}^{N} G(x_j, x_i) q_i, \quad j = 1, 2, \cdots N$$

 \rightarrow *N*-body problem or Matrix vector multiplication

- Direct computation: $\mathcal{O}(N^2)$
- FMM: $\mathcal{O}(N)$ or $\mathcal{O}(N \log N)$

э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Fast Solver - Heterogenous Fast Multipole Method

Fast Solver

Integral operator for Helmholtz equation in the free-space

$$u(\mathbf{x}) = \int_{\partial\Omega} g(\mathbf{x}, \mathbf{x}') q(\mathbf{x}') d\mathbf{x}' \approx \sum_{i=1}^{N} g(\mathbf{x}, \mathbf{x}'_i) q(\mathbf{x}'_i)$$

where $g(\mathbf{x}, \mathbf{x}') = \frac{i}{4} H_0^{(1)}(k|\mathbf{x} - \mathbf{x}'|)$

Fast Solver - Heterogenous Fast Multipole Method

Fast Solver

Integral operator for Helmholtz equation in the free-space

$$u(\mathbf{x}) = \int_{\partial\Omega} g(\mathbf{x}, \mathbf{x}') q(\mathbf{x}') d\mathbf{x}' \approx \sum_{i=1}^{N} g(\mathbf{x}, \mathbf{x}'_i) q(\mathbf{x}'_i)$$

where $g(\mathbf{x}, \mathbf{x}') = \frac{i}{4} H_0^{(1)}(k|\mathbf{x} - \mathbf{x}'|)$

Fast Solver - Heterogenous Fast Multipole Method

Graf's Addition Theorem

$$C_{\nu}(w)e^{i\nu\chi}=\sum_{p=-\infty}^{\infty}C_{\nu+p}(u)J_{p}(v)e^{ip\alpha},$$

where C_{ν} is either $H_{\nu}^{(1)}$ or J_{ν}

Fast Solver - Heterogenous Fast Multipole Method

Multipole expansion

$$u(\mathbf{x}) = \sum_{i=1}^{N} \frac{i}{4} H_0^{(1)}(k|\mathbf{x} - \mathbf{x}_i'|) q(\mathbf{x}_i') \approx \frac{i}{4} \sum_{p=-P}^{P} \alpha_p H_p(k|\mathbf{x} - \mathbf{x}_c|) e^{ip\theta_c},$$

where

$$\alpha_p = \sum_{j=1}^N q_j e^{-ip\theta_j} J_p(k\rho_j)$$

Fast Solver - Heterogenous Fast Multipole Method

 Helmholtz equation with Impedance boundary condition (method of image)

Fast Solver - Heterogenous Fast Multipole Method

 Helmholtz equation with Impedance boundary condition (method of image)

$$u_{\mathbf{x}_0}(\mathbf{x}) = g(\mathbf{x}, \mathbf{x}_0) + u_{\mathbf{x}_0}^s(\mathbf{x})$$

$$\equiv g(\mathbf{x}, \mathbf{x}_0) + \left(g(\mathbf{x}, \mathbf{x}_0^{im}) + 2i\alpha \int_0^\infty g(\mathbf{x}, \mathbf{x}_0^{im} - s\hat{y})e^{i\alpha s}ds\right)$$

Fast Solver - Heterogenous Fast Multipole Method

N source points

$$u(\mathbf{x}) = \sum_{j=1}^{N} u_{\mathbf{x}_{j}}(\mathbf{x})q(\mathbf{x}_{j})$$

$$= \sum_{j=1}^{N} q_{j}(\mathbf{x}_{j}) \left(g(\mathbf{x},\mathbf{x}_{j}) + g(\mathbf{x},\mathbf{x}_{j}^{im}) + 2i\alpha \int_{0}^{\infty} g(\mathbf{x},\mathbf{x}_{j}^{im} - s\hat{y})e^{i\alpha s}ds\right)$$

Fast Solver - Heterogenous Fast Multipole Method

$$\text{Multipole expansion}$$

$$u(\mathbf{x}) \approx \frac{i}{4} \sum_{p=-P}^{P} \alpha_p H_p(k|\mathbf{x} - \mathbf{x}_c|) e^{ip\theta_c}$$

$$+ \frac{i}{4} \sum_{p=-P}^{P} \bar{\alpha}_p \left(H_p(k|\mathbf{x} - \mathbf{x}_c^{im}|) e^{ip\theta_{im}} \right) e^{ip\theta_{im}}$$

$$+ 2i\alpha \int_0^\infty H_p(k|\mathbf{x} - (\mathbf{x}_c^{im} - s\hat{y})|) e^{ip\hat{\theta}_{im}} e^{i\alpha s} ds \right),$$

where $\bar{\alpha}_p$ is the complex conjugate of α_p .

э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Source $\{\alpha_p\}$

Fast Solver - Heterogenous Fast Multipole Method

Test problem (Uniform distribution in a unit box)

Fast Solver - Heterogenous Fast Multipole Method

• Accuracy for k = 0.1 and k = 1 with N = 10000

р	Error for $k = 0.1$	Error for $k = 1$
E ₅	1.23×10^{-4}	1.43×10^{-4}
E ₁₀	2.73×10^{-6}	3.81×10^{-6}
E ₂₀	2.06×10^{-9}	2.85×10^{-9}
E ₃₀	1.19×10^{-11}	1.65×10^{-11}

 CPU time for p = 39 and k = 0.1 (Intel Xeon E5-2697 2.6Ghz with gcc, Dell 7910 workstation)

N	100	6400	10000	90000	360000	640000	810000	1000000
H-FMM time (sec)	0.01	0.67	1.19	10.92	46.58	100.85	116.03	135.05
Direct time (sec)			1.64	132.50	2199.92	6700	10732.10	16357.42

Fast Solver - Heterogenous Fast Multipole Method

► CPU time in the log-log scale (linear scaling ☺)

ロトメロトメヨトメヨトニヨーの

Conclusions and Summary

- Boundary integral equation (BIE) method for layered media
- EM scattering problem using volume integral equation (VIE) method
- Heterogeneous fast multipole method
 - \rightarrow Extension to multi-layered media (on-going work)
- Stochastic methodology for meta-material design
- Some source codes http://faculty.uml.edu/min_cho/software.html

Conclusion

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ