Fast computational method for wave scattering

Min Hyung Cho
Department of Mathematical Sciences
University of Massachusetts Lowell
Joint work with
Jingfang Huang at UNC, Alex Barnett at Dartmouth College/Simons Foundation,
Duan Chen and Wei Cai at UNC Charlotte

Introduction

Wave scattering in layered Media Boundary integral equation for Helmholtz equation in 2-D Volume integral equation for Maxwell's equations in 3-D

Fast Solver - Heterogenous Fast Multipole Method

Conclusion

Boundary value problem

Boundary value problem

Helmholtz equations

$$
\begin{aligned}
& \Delta u_{1}+k_{1}^{2} u_{1}=0 \\
& \Delta u_{2}+k_{2}^{2} u_{2}=0
\end{aligned}
$$

Boundary value problem

Helmholtz equations

$$
\begin{aligned}
& \Delta u_{1}+k_{1}^{2} u_{1}=0 \\
& \Delta u_{2}+k_{2}^{2} u_{2}=0
\end{aligned}
$$

Interface conditions on $\partial \Omega$

$$
\begin{aligned}
u_{1}+u^{i n c} & =u_{2} \\
\frac{\partial u_{1}}{\partial \mathbf{n}}+\frac{\partial u^{i n c}}{\partial \mathbf{n}} & =\frac{\partial u_{2}}{\partial \mathbf{n}}
\end{aligned}
$$

Boundary value problem

Helmholtz equations

$$
\begin{aligned}
& \Delta u_{1}+k_{1}^{2} u_{1}=0 \\
& \Delta u_{2}+k_{2}^{2} u_{2}=0
\end{aligned}
$$

Interface conditions on $\partial \Omega$

$$
\begin{aligned}
u_{1}+u^{i n c} & =u_{2} \\
\frac{\partial u_{1}}{\partial \mathbf{n}}+\frac{\partial u^{i n c}}{\partial \mathbf{n}} & =\frac{\partial u_{2}}{\partial \mathbf{n}}
\end{aligned}
$$

Sommerfeld radiation condition

$$
\lim _{r \rightarrow \infty} \sqrt{r}\left(\frac{\partial u_{1}}{\partial r}-\imath k_{1} u_{1}\right)=0
$$

Boundary integral equation

Boundary integral equation

- Solutions in $\mathbb{R}^{2} \backslash \Omega$ and Ω (Potential theory)

Boundary integral equation

- Solutions in $\mathbb{R}^{2} \backslash \Omega$ and Ω (Potential theory)

$u_{1}(\mathbf{r})=\int_{\partial \Omega} \frac{\partial G^{1}}{\partial \mathbf{n}^{\prime}}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \tau\left(\mathbf{r}^{\prime}\right) d s_{\mathbf{r}}^{\prime}+\int_{\partial \Omega} G^{1}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \sigma\left(\mathbf{r}^{\prime}\right) d s_{\mathbf{r}}^{\prime} \quad$ for $\mathbf{r} \in \mathbb{R}^{2} \backslash \Omega$
$u_{2}(\mathbf{r})=\int_{\partial \Omega} \frac{\partial G^{2}}{\partial \mathbf{n}^{\prime}}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \tau\left(\mathbf{r}^{\prime}\right) d s_{\mathbf{r}}^{\prime}+\int_{\partial \Omega} G^{2}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \sigma\left(\mathbf{r}^{\prime}\right) d s_{\mathbf{r}}^{\prime} \quad$ for $\mathbf{r} \in \Omega$,
where

$$
G^{i}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\frac{\imath}{4} \underbrace{H_{0}^{(1)}\left(k_{i}\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right)}_{\text {Hankel function }}
$$

Boundary integral equation

- Solutions in $\mathbb{R}^{2} \backslash \Omega$ and Ω

$$
\begin{array}{ll}
u_{1}(\mathbf{r})=\left(D^{1} \tau\right)(\mathbf{r})+\left(S^{1} \sigma\right)(\mathbf{r}) & \text { for } \mathbf{r} \in \mathbb{R}^{2} \backslash \Omega, \\
u_{2}(\mathbf{r})=\left(D^{2} \tau\right)(\mathbf{r})+\left(S^{2} \sigma\right)(\mathbf{r}) & \text { for } \mathbf{r} \in \Omega,
\end{array}
$$

where

$$
\begin{aligned}
& \left(D^{i} \tau\right)(\mathbf{r})=\int_{\partial \Omega} \frac{\partial G^{i}}{\partial \mathbf{n}^{\prime}}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \tau\left(\mathbf{r}^{\prime}\right) d s_{\mathbf{r}}^{\prime} \\
& \left(S^{i} \sigma\right)(\mathbf{r})=\int_{\partial \Omega} G^{i}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \sigma\left(\mathbf{r}^{\prime}\right) d s_{\mathbf{r}}^{\prime}
\end{aligned}
$$

Boundary integral equation

- Matching interface conditions on $\partial \Omega$

Boundary integral equation

- Matching interface conditions on $\partial \Omega$
- Let $\mathbf{r} \rightarrow \mathbf{x} \in \partial \Omega$

Boundary integral equation

- Matching interface conditions on $\partial \Omega$
- Let $\mathbf{r} \rightarrow \mathbf{x} \in \partial \Omega$

$$
\begin{aligned}
& u_{1}(\mathbf{x})=\frac{1}{2} \tau(\mathbf{x})+\left(D^{1} \tau\right)(\mathbf{x})+\left(S^{1} \sigma\right)(\mathbf{x}) \\
& u_{2}(\mathbf{x})=-\frac{1}{2} \tau(\mathbf{x})+\left(D^{2} \tau\right)(\mathbf{x})+\left(S^{2} \sigma\right)(\mathbf{x})
\end{aligned}
$$

Boundary integral equation

- Matching interface conditions on $\partial \Omega$
- Let $\mathbf{r} \rightarrow \mathbf{x} \in \partial \Omega$

$$
\begin{aligned}
u_{1}(\mathbf{x}) & =\frac{1}{2} \tau(\mathbf{x})+\left(D^{1} \tau\right)(\mathbf{x})+\left(S^{1} \sigma\right)(\mathbf{x}) \\
u_{2}(\mathbf{x}) & =-\frac{1}{2} \tau(\mathbf{x})+\left(D^{2} \tau\right)(\mathbf{x})+\left(S^{2} \sigma\right)(\mathbf{x}) \\
\frac{\partial u_{1}}{\partial \mathbf{n}}(\mathbf{x}) & =\frac{\partial}{\partial \mathbf{n}}\left(D^{1} \tau\right)(\mathbf{x})-\frac{1}{2} \sigma(\mathbf{x})+\frac{\partial}{\partial \mathbf{n}}\left(S^{1} \sigma\right)(\mathbf{x}) \\
\frac{\partial u_{2}}{\partial \mathbf{n}}(\mathbf{x}) & =\frac{\partial}{\partial \mathbf{n}}\left(D^{2} \tau\right)(\mathbf{x})+\frac{1}{2} \sigma(\mathbf{x})+\frac{\partial}{\partial \mathbf{n}}\left(S^{2} \sigma\right)(\mathbf{x})
\end{aligned}
$$

Boundary integral equation

- Matching interface conditions on $\partial \Omega$
- Let $\mathbf{r} \rightarrow \mathbf{x} \in \partial \Omega$

$$
\begin{aligned}
u_{1}(\mathbf{x}) & =\frac{1}{2} \tau(\mathbf{x})+\left(D^{1} \tau\right)(\mathbf{x})+\left(S^{1} \sigma\right)(\mathbf{x}) \\
u_{2}(\mathbf{x}) & =-\frac{1}{2} \tau(\mathbf{x})+\left(D^{2} \tau\right)(\mathbf{x})+\left(S^{2} \sigma\right)(\mathbf{x}) \\
\frac{\partial u_{1}}{\partial \mathbf{n}}(\mathbf{x}) & =\left(T^{1} \tau\right)(\mathbf{x})-\frac{1}{2} \sigma(\mathbf{x})+\left(D^{1, *} \sigma\right)(\mathbf{x}) \\
\frac{\partial u_{2}}{\partial \mathbf{n}}(\mathbf{x}) & =\left(T^{2} \tau\right)(\mathbf{x})+\frac{1}{2} \sigma(\mathbf{x})+\left(D^{2, *} \sigma\right)(\mathbf{x})
\end{aligned}
$$

Boundary integral equation

- Interface Conditions on $\partial \Omega$

$$
\begin{aligned}
u_{1}+u^{i n c} & =u_{2} \\
\frac{\partial u_{1}}{\partial \mathbf{n}}+\frac{\partial u^{i n c}}{\partial \mathbf{n}} & =\frac{\partial u_{2}}{\partial \mathbf{n}}
\end{aligned}
$$

Boundary integral equation

- Interface Conditions on $\partial \Omega$

$$
\begin{gathered}
\underline{u_{1}}+u^{i n c}=\underline{u_{2}} \\
\frac{\partial u_{1}}{\partial \mathbf{n}}+\frac{\partial u^{i n c}}{\partial \mathbf{n}}=\underline{\frac{\partial u_{2}}{\partial \mathbf{n}}}
\end{gathered}
$$

Boundary integral equation

- Interface Conditions on $\partial \Omega$

$$
\begin{aligned}
\frac{1}{2} \tau+D^{1} \tau+S^{1} \sigma+u^{i n c} & =-\frac{1}{2} \tau+D^{2} \tau+S^{2} \sigma \\
T^{1} \tau-\frac{1}{2} \sigma+D^{1, *} \sigma+\frac{\partial u^{i n c}}{\partial \mathbf{n}} & =T^{2} \tau+\frac{1}{2} \sigma+D^{2, *} \sigma
\end{aligned}
$$

Boundary integral equations

- Boundary integral equations (Müller '69, Rokhlin '83)

$$
\begin{aligned}
\tau+\left(D^{1}-D^{2}\right) \tau+\left(S^{1}-S^{2}\right) \sigma & =-u^{i n c} \\
-\sigma+\left(T^{1}-T^{2}\right) \tau+\left(D^{1, *}-D^{2, *}\right) \sigma & =-\frac{\partial u^{i n c}}{\partial \mathbf{n}}
\end{aligned}
$$

Boundary integral equations

- Boundary integral equations (Müller '69, Rokhlin '83)

$$
\begin{aligned}
\tau+\left(D^{1}-D^{2}\right) \tau+\left(S^{1}-S^{2}\right) \sigma & =-u^{i n c} \\
-\sigma+\left(T^{1}-T^{2}\right) \tau+\left(D^{1, *}-D^{2, *}\right) \sigma & =-\frac{\partial u^{i n c}}{\partial \mathbf{n}}
\end{aligned}
$$

or

$$
\left(\left[\begin{array}{ll}
I & 0 \\
0 & I
\end{array}\right]+\left[\begin{array}{cc}
D^{1}-D^{2} & S^{2}-S^{1} \\
T^{1}-T^{2} & D^{2, *}-D^{1, *}
\end{array}\right]\right)\left[\begin{array}{c}
\tau \\
-\sigma
\end{array}\right]=\left[\begin{array}{c}
-u^{i n c} \\
-\frac{\partial u^{i n c}}{\partial \mathbf{n}}
\end{array}\right]
$$

Boundary integral equations

- Boundary integral equations (Müller '69, Rokhlin '83)

$$
\begin{aligned}
\tau+\left(D^{1}-D^{2}\right) \tau+\left(S^{1}-S^{2}\right) \sigma & =-u^{i n c} \\
-\sigma+\left(T^{1}-T^{2}\right) \tau+\left(D^{1, *}-D^{2, *}\right) \sigma & =-\frac{\partial u^{i n c}}{\partial \mathbf{n}}
\end{aligned}
$$

or

$$
\left(\left[\begin{array}{ll}
I & 0 \\
0 & I
\end{array}\right]+\left[\begin{array}{cc}
D^{1}-D^{2} & S^{2}-S^{1} \\
T^{1}-T^{2} & D^{2, *}-D^{1, *}
\end{array}\right]\right)\left[\begin{array}{c}
\tau \\
-\sigma
\end{array}\right]=\left[\begin{array}{c}
-u^{\text {inc }} \\
-\frac{\partial u^{i n c}}{\partial \mathbf{n}}
\end{array}\right]
$$

- Discretization

$$
(I+A) \boldsymbol{\eta}=\mathbf{f}
$$

- Smooth-star domain : $\omega=4 \pi, \varepsilon_{1}=1, \varepsilon_{2}=4, \mu_{1}=\mu_{2}=1$, $\theta^{i n c}=-\pi / 4,400 \times 400$ matrix and 12-digit accuracy

Incident field

- Smooth-star domain : $\omega=4 \pi, \varepsilon_{1}=1, \varepsilon_{2}=4, \mu_{1}=\mu_{2}=1$, $\theta^{\text {inc }}=-\pi / 4,400 \times 400$ matrix and 12-digit accuracy

Total field

Wave scattering in layered Media

Fast computational method for wave scattering
LWave scattering in layered Media

Layered media

Two layers with one periodic interface $($ period $=d$)

Two layers with one periodic interface $($ period $=d)$

$\left\llcorner_{\text {Wave scattering in layered Media }}\right.$

- Boundary integral equation for Helmholtz equation in 2-D

Two layers with one periodic interface $($ period $=d)$

Fast computational method for wave scattering

LWave scattering in layered Media

- Boundary integral equation for Helmholtz equation in 2-D

Solution in each layer

LWave scattering in layered Media

- Boundary integral equation for Helmholtz equation in 2-D

Solution in each layer

$$
\begin{aligned}
& u_{1}(\mathbf{r})=\tilde{D}_{\Omega_{1}}^{1} \tau+\tilde{S}_{\Omega_{1}}^{1} \sigma+\sum_{p=1}^{P} c_{p}^{1} \phi_{p}^{1} \\
& u_{2}(\mathbf{r})=\tilde{D}_{\Omega_{2}}^{2} \tau+\tilde{S}_{\Omega_{2}}^{2} \sigma+\sum_{p=1}^{P} c_{p}^{2} \phi_{p}^{2}
\end{aligned}
$$

Solution in each layer

$$
\begin{aligned}
& u_{1}(\mathbf{r})=\tilde{D}_{\Omega_{1}}^{1} \tau+\tilde{S}_{\Omega_{1}}^{1} \sigma+\sum_{p=1}^{P} c_{p}^{1} \phi_{p}^{1} \\
& u_{2}(\mathbf{r})=\tilde{D}_{\Omega_{2}}^{2} \tau+\tilde{S}_{\Omega_{2}}^{2} \sigma+\sum_{p=1}^{P} c_{p}^{2} \phi_{p}^{2}
\end{aligned}
$$

where

$$
\begin{aligned}
&\left(\tilde{D}_{V}^{i} \tau\right)(\mathbf{r}):= \sum_{l=-1}^{1} \alpha^{\prime} \int_{W} \frac{\partial G^{i}}{\partial \mathbf{n}^{\prime}}\left(\mathbf{r}, \mathbf{r}^{\prime}+l \mathbf{d}\right) \tau\left(\mathbf{r}^{\prime}\right) d s_{\mathbf{r}^{\prime}},\left(\tilde{S}_{V}^{i} \sigma\right)(\mathbf{r}):=\sum_{l=-1}^{1} \alpha^{\prime} \int_{W} G^{i}\left(\mathbf{r}, \mathbf{r}^{\prime}+/ \mathbf{d}\right) \sigma\left(\mathbf{r}^{\prime}\right) d s_{\mathbf{r}^{\prime}}, \\
&\left(\tilde{T}_{V}^{i} \tau\right)(\mathbf{r}):=\sum_{l=-1}^{1} \alpha^{\prime} \int_{W} \frac{\partial^{2} G^{i}}{\partial \mathbf{n} \partial \mathbf{n}^{\prime}}\left(\mathbf{r}, \mathbf{r}^{\prime}+l \mathbf{d}\right) \tau\left(\mathbf{r}^{\prime}\right) d s_{\mathbf{r}^{\prime}},\left(\tilde{D}_{V}^{i, *} \sigma\right)(\mathbf{r}):=\sum_{l=-1}^{1} \alpha^{\prime} \int_{W} \frac{\partial G^{i}}{\partial \mathbf{n}}\left(\mathbf{r}, \mathbf{r}^{\prime}+/ \mathbf{d}\right) \sigma\left(\mathbf{r}^{\prime}\right) d s_{\mathbf{r}^{\prime}} . \\
& \phi_{p}^{i}(\mathbf{r}):=\frac{\partial G^{i}}{\partial \mathbf{n}_{p}}\left(\mathbf{r}, \mathbf{y}_{p}^{i}\right)+i k_{i} G^{i}\left(\mathbf{r}, \mathbf{y}_{p}^{i}\right), \mathbf{r} \in \Omega_{i}, p=1,2, \alpha=e^{i d k_{1} \cos \theta^{i n c}}
\end{aligned}
$$

Boundary integral equations

$$
\begin{aligned}
& u_{1}(\mathbf{r})=\tilde{D}_{\Omega_{1}}^{1} \tau+\tilde{S}_{\Omega_{1}}^{1} \sigma+\sum_{p=1}^{P} c_{p}^{1} \phi_{p}^{1} \\
& u_{2}(\mathbf{r})=\tilde{D}_{\Omega_{2}}^{2} \tau+\tilde{S}_{\Omega_{2}}^{2} \sigma+\sum_{p=1}^{P} c_{p}^{2} \phi_{p}^{2}
\end{aligned}
$$

Boundary integral equations

$$
\begin{aligned}
& u_{1}(\mathbf{r})=\tilde{D}_{\Omega_{1}}^{1} \tau+\tilde{S}_{\Omega_{1}}^{1} \sigma+\sum_{p=1}^{P} c_{p}^{1} \phi_{p}^{1} \\
& u_{2}(\mathbf{r})=\tilde{D}_{\Omega_{2}}^{2} \tau+\tilde{S}_{\Omega_{2}}^{2} \sigma+\sum_{p=1}^{P} c_{p}^{2} \phi_{p}^{2}
\end{aligned}
$$

- Interface conditions

Boundary integral equations

$$
\begin{aligned}
& u_{1}(\mathbf{r})=\tilde{D}_{\Omega_{1}}^{1} \tau+\tilde{S}_{\Omega_{1}}^{1} \sigma+\sum_{p=1}^{P} c_{p}^{1} \phi_{p}^{1} \\
& u_{2}(\mathbf{r})=\tilde{D}_{\Omega_{2}}^{2} \tau+\tilde{S}_{\Omega_{2}}^{2} \sigma+\sum_{p=1}^{P} c_{p}^{2} \phi_{p}^{2}
\end{aligned}
$$

- Interface conditions
- Quasi-periodicity

$$
\begin{aligned}
& \left.u\right|_{L}-\left.\alpha u\right|_{R}=0 \\
& \left.u_{n}\right|_{L}-\left.\alpha u_{n}\right|_{R}=0
\end{aligned}
$$

Boundary integral equations

$$
\begin{aligned}
& u_{1}(\mathbf{r})=\tilde{D}_{\Omega_{1}}^{1} \tau+\tilde{S}_{\Omega_{1}}^{1} \sigma+\sum_{p=1}^{P} c_{p}^{1} \phi_{p}^{1} \\
& u_{2}(\mathbf{r})=\tilde{D}_{\Omega_{2}}^{2} \tau+\tilde{S}_{\Omega_{2}}^{2} \sigma+\sum_{p=1}^{P} c_{p}^{2} \phi_{p}^{2}
\end{aligned}
$$

- Interface conditions
- Quasi-periodicity
$\left.u\right|_{L}-\left.\alpha u\right|_{R}=0$
$\left.u_{n}\right|_{L}-\left.\alpha u_{n}\right|_{R}=0$
- Radiation condition
(Rayleigh-Bloch Expansion)

Boundary integral equations

$$
\begin{aligned}
& u_{1}(\mathbf{r})=\tilde{D}_{\Omega_{1}}^{1} \tau+\tilde{S}_{\Omega_{1}}^{1} \sigma+\sum_{p=1}^{P} c_{p}^{1} \phi_{p}^{1} \\
& u_{2}(\mathbf{r})=\tilde{D}_{\Omega_{2}}^{2} \tau+\tilde{S}_{\Omega_{2}}^{2} \sigma+\sum_{p=1}^{P} c_{p}^{2} \phi_{p}^{2}
\end{aligned}
$$

- Interface conditions
- Quasi-periodicity

$$
\begin{aligned}
& \text { - Quasi-periodicity } \\
& \left.u\right|_{L}-\left.\alpha u\right|_{R}=0 \\
& \left.u_{n}\right|_{L}-\left.\alpha u_{n}\right|_{R}=0
\end{aligned} \quad \rightarrow\left[\begin{array}{ccc}
\mathbf{A} & \mathbf{B} & \mathbf{0} \\
\mathbf{C} & \mathbf{Q} & \mathbf{0} \\
\mathbf{Z} & \mathbf{V} & \mathbf{W}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{\eta} \\
\mathbf{c} \\
\mathbf{a}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{f} \\
\mathbf{0} \\
\mathbf{0}
\end{array}\right]
$$

- Radiation condition (Rayleigh-Bloch Expansion)

LWave scattering in layered Media

- Flat surface $\left(\varepsilon_{1}=1, \varepsilon_{2}=1.77\right.$ (water), $\omega=30$, Error $=2 \times 10^{-14}$)

LWave scattering in layered Media

- Flat surface $\left(\varepsilon_{1}=1, \varepsilon_{2}=1.77\right.$ (water), $\omega=30$, Error $=2 \times 10^{-14}$)

Reflected+Transmitted wave

- Flat surface $\left(\varepsilon_{1}=1, \varepsilon_{2}=1.77\right.$ (water), $\omega=30$, Error $\left.=2 \times 10^{-14}\right)$

Total field

- Sine surface ($\varepsilon_{1}=1, \varepsilon_{2}=1.77$ (water), $\omega=30$, Error $=5 \times 10^{-13}$)

LWave scattering in layered Media

- Sine surface ($\varepsilon_{1}=1, \varepsilon_{2}=1.77$ (water), $\omega=30$, Error $=5 \times 10^{-13}$)

Reflected+Transmitted wave

- Sine surface $\left(\varepsilon_{1}=1, \varepsilon_{2}=1.77\right.$ (water), $\omega=30$, Error $=5 \times 10^{-13}$)

Total field

- In 2-D, boundary integral equation methods using periodizing scheme
\rightarrow Left : J. Lai, M. Kobayashi, A. Barnett, JCP 2015 \rightarrow Right : (1000 layers) M.H. Cho and A. Barnett OPEX 2015

- CPU time and memory usage

Number of interfaces	1	3	10	30	100	300	1000
Matrix Filling (sec)	0.518	1.860	4.200	5.600	12.384	32.332	103.331
Schur Complement (sec)	0.028	0.058	0.299	0.644	2.263	6.525	21.037
Block Solve (sec)	0.003	0.041	0.398	0.898	2.805	8.626	26.655
Memory (MB)	18	41	83	183	608	1753	5830
Flux Error	$4.8 \mathrm{e}-12$	$3.1 \mathrm{e}-11$	$2.4 \mathrm{e}-11$	$4.0 \mathrm{e}-11$	$2.2 \mathrm{e}-11$	$1.3 \mathrm{e}-10$	$9.1 \mathrm{e}-10$

- In 3-D, BIE for Maxwell's equations is challenging

- In 3-D, BIE for Maxwell's equations is challenging
\rightarrow Lippmann-Schwinger type volume integral equation (VIE)
(D. Chen, W. Cai, B. Ziner, and M.H. Cho, JCP, 2016)

$$
\mathbf{C} \cdot \mathbf{E}(\mathbf{r})=\mathbf{E}^{i n c}(\mathbf{r})-\imath \omega \mu(\mathbf{r}) \int_{\Omega} d \mathbf{r}^{\prime} \imath \omega \Delta \varepsilon\left(\mathbf{r}^{\prime}\right) \cdot \overline{\mathbf{G}}_{E}\left(\mathbf{r}^{\prime}, \mathbf{r}\right)
$$

where

$$
\mathbf{C}=\mathbf{I}+\mathbf{L}_{V_{\delta}} \cdot \Delta \varepsilon(\mathbf{r})
$$

and the Dyadic Green's function

$$
\overline{\mathbf{G}}_{E}=\frac{1}{4 \pi}\left(\mathbf{I}+\frac{1}{k^{2}} \nabla \nabla\right) \frac{e^{-\imath k\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}
$$

Fast computational method for wave scattering
LWave scattering in layered Media

- Volume integral equation for Maxwell's equations in 3-D

Fast computational method for wave scattering
LWave scattering in layered Media

- Volume integral equation for Maxwell's equations in 3-D

LWave scattering in layered Media

- Volume integral equation for Maxwell's equations in 3-D
- Lippmann-Schwinger type Volume integral equation in multilayered media

- Lippmann-Schwinger type Volume integral equation in multilayered media

- Dyadic Green's function $\overline{\mathbf{G}}_{E} \rightarrow$ Layered media Dyadic Green's function $\overline{\mathbf{G}}_{E}^{L}$
- Layered media Green's function using Sommerfeld integrals and Fresnel reflection coefficients (M.H. Cho and W. Cai, JSC 2017)

Fast computational method for wave scattering

L Wave scattering in layered Media

- Volume integral equation for Maxwell's equations in 3-D
- Reflected parts $(j=1,2)$

$$
\begin{aligned}
& G_{j x x}^{R}=k_{j}^{2} g_{j, 1}^{R}-\frac{1}{2}\left(g_{j, 3}^{R}+g_{j, 7}^{R}\right)+\left(\frac{1}{2} \rho^{2}-\left(y-y^{\prime}\right)^{2}\right) g_{j, 2}^{R} \\
& G_{j y y}^{R}=k_{j}^{2} g_{j, 1}^{R}-\frac{1}{2}\left(g_{j, 3}^{R}+g_{j, 7}^{R}\right)+\left(\frac{1}{2} \rho^{2}-\left(x-x^{\prime}\right)^{2}\right) g_{j, 2}^{R} \\
& G_{j z z}^{R}=-g_{j, 3}^{R} \\
& G_{j x y}^{R}=G_{j y x}^{R}=\left(x-x^{\prime}\right)\left(y-y^{\prime}\right) g_{j, 2}^{R} \\
& G_{j x z}^{R}=-G_{j z x}^{R}=-i\left(x-x^{\prime}\right) g_{j, 6}^{R}, G_{j y z}^{R}=-G_{j z y}^{R}=-i\left(y-y^{\prime}\right) g_{j, 6}^{R}
\end{aligned}
$$

- Transmitted parts $(j=2,3)$

$$
\begin{aligned}
& G_{j x x}^{T}=k_{j}^{2} g_{j, 1}^{T}-\frac{1}{2} g_{j, 3}^{T}+\left(\frac{1}{2} \rho^{2}-\left(y-y^{\prime}\right)^{2}\right) g_{j, 2}^{T} \\
& G_{j y y}^{T}=k_{j}^{2} g_{j, 1}^{T}-\frac{1}{2} g_{j, 3}^{T}+\left(\frac{1}{2} \rho^{2}-\left(x-x^{\prime}\right)^{2}\right) g_{j, 2}^{T}, \\
& G_{j z z}^{T}=g_{j, 4}^{T}, \\
& G_{j x y}^{T}=G_{j y x}^{T}=\left(x-x^{\prime}\right)\left(y-y^{\prime}\right) g_{j, 2}^{T} \\
& G_{j x z}^{T}=i\left(x-x^{\prime}\right) g_{j, 6}^{T}, G_{j y z}^{T}=i\left(y-y^{\prime}\right) g_{j, 6}^{T} \\
& G_{j z x}^{T}=i\left(x-x^{\prime}\right) g_{j, 9}^{T}, G_{j z y}^{T}=i\left(y-y^{\prime}\right) g_{j, 9}^{T},
\end{aligned}
$$

where

$$
g^{R, T}=2 \pi \int_{0}^{\infty} k_{s}^{n+1} \tilde{g} \frac{J_{n}\left(k_{s} \rho\right)}{\rho^{n}} e^{ \pm \imath k_{z}\left(z+z^{\prime}\right)} d k_{s} \text { and } \tilde{g}=\tilde{g}\left(k_{s}\right)
$$

$\left\llcorner_{\text {Wave scattering in layered Media }}\right.$

- Volume integral equation for Maxwell's equations in 3-D
- Electric field Green's function in a 3 layer structure

- Volume integral equation with layered media Green's function (D. Chen, M.H. Cho, and W. Cai, SISC, 2016 submitted)

$$
\mathbf{C} \cdot \mathbf{E}(\mathbf{r})=\mathbf{E}^{i n c}(\mathbf{r})-\imath \omega \mu(\mathbf{r}) \int_{\Omega} d \mathbf{r}^{\prime} \imath \omega \Delta \varepsilon\left(\mathbf{r}^{\prime}\right) \cdot \overline{\mathbf{G}}_{E}^{L}\left(\mathbf{r}^{\prime}, \mathbf{r}\right)
$$

where

$$
\mathbf{C}=\mathbf{I}+\mathbf{L}_{V_{\delta}} \cdot \Delta \varepsilon(\mathbf{r})
$$

$\left\llcorner_{\text {Wave scattering in layered Media }}\right.$

- Volume integral equation for Maxwell's equations in 3-D
- Volume integral equation with layered media Green's function

Fast solver - Heterogeneous Fast Multipole Method

Fast Solver

- Fast Multipole Method (FMM) by Rokhlin and Greengard

$$
\sum_{i=1}^{N} G\left(x_{j}, x_{i}\right) q_{i}, \quad j=1,2, \cdots N
$$

$\rightarrow N$-body problem or Matrix vector multiplication

- Direct computation: $\mathcal{O}\left(N^{2}\right)$
- FMM: $\mathcal{O}(N)$ or $\mathcal{O}(N \log N)$

Fast Solver

- Integral operator for Helmholtz equation in the free-space

$$
u(\mathbf{x})=\int_{\partial \Omega} g\left(\mathbf{x}, \mathbf{x}^{\prime}\right) q\left(\mathbf{x}^{\prime}\right) d \mathbf{x}^{\prime} \approx \sum_{i=1}^{N} g\left(\mathbf{x}, \mathbf{x}_{i}^{\prime}\right) q\left(\mathbf{x}_{i}^{\prime}\right)
$$

where $g\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\frac{\imath}{4} H_{0}^{(1)}\left(k\left|\mathbf{x}-\mathbf{x}^{\prime}\right|\right)$

Fast Solver

- Integral operator for Helmholtz equation in the free-space

$$
u(\mathbf{x})=\int_{\partial \Omega} g\left(\mathbf{x}, \mathbf{x}^{\prime}\right) q\left(\mathbf{x}^{\prime}\right) d \mathbf{x}^{\prime} \approx \sum_{i=1}^{N} g\left(\mathbf{x}, \mathbf{x}_{i}^{\prime}\right) q\left(\mathbf{x}_{i}^{\prime}\right)
$$

where $g\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\frac{\imath}{4} H_{0}^{(1)}\left(k\left|\mathbf{x}-\mathbf{x}^{\prime}\right|\right)$

- Graf's Addition Theorem

$$
C_{\nu}(w) e^{\imath \nu \chi}=\sum_{p=-\infty}^{\infty} C_{\nu+p}(u) J_{p}(v) e^{\imath p \alpha}
$$

where C_{ν} is either $H_{\nu}^{(1)}$ or J_{ν}

- Multipole expansion

$$
u(\mathbf{x})=\sum_{i=1}^{N} \frac{\imath}{4} H_{0}^{(1)}\left(k\left|\mathbf{x}-\mathbf{x}_{i}^{\prime}\right|\right) q\left(\mathbf{x}_{i}^{\prime}\right) \approx \frac{\imath}{4} \sum_{p=-P}^{P} \alpha_{p} H_{p}\left(k\left|\mathbf{x}-\mathbf{x}_{c}\right|\right) e^{\imath p \theta_{c}}
$$

where

$$
\alpha_{p}=\sum_{j=1}^{N} q_{j} e^{-\imath p \theta_{j}} J_{p}\left(k \rho_{j}\right)
$$

- Helmholtz equation with Impedance boundary condition (method of image)

- Helmholtz equation with Impedance boundary condition (method of image)

$$
\begin{aligned}
u_{\mathbf{x}_{0}}(\mathbf{x}) & =g\left(\mathbf{x}, \mathbf{x}_{0}\right)+u_{\mathbf{x}_{0}}^{s}(\mathbf{x}) \\
& \equiv g\left(\mathbf{x}, \mathbf{x}_{0}\right)+\left(g\left(\mathbf{x}, \mathbf{x}_{0}^{i m}\right)+2 \imath \alpha \int_{0}^{\infty} g\left(\mathbf{x}, \mathbf{x}_{0}^{i m}-s \hat{y}\right) e^{\imath \alpha s} d s\right)
\end{aligned}
$$

- N source points

- Multipole expansion

$$
\begin{aligned}
u(\mathbf{x}) & \approx \frac{i}{4} \sum_{p=-P}^{P} \alpha_{p} H_{p}\left(k\left|\mathbf{x}-\mathbf{x}_{c}\right|\right) e^{\imath p \theta_{c}} \\
& +\frac{\imath}{4} \sum_{p=-P}^{P} \bar{\alpha}_{p}\left(H_{p}\left(k\left|\mathbf{x}-\mathbf{x}_{c}^{i m}\right|\right) e^{\imath p \theta_{i m}}\right. \\
& \left.\quad+2 \imath \alpha \int_{0}^{\infty} H_{p}\left(k\left|\mathbf{x}-\left(\mathbf{x}_{c}^{i m}-s \hat{y}\right)\right|\right) e^{\imath p \hat{\theta}_{i m}} e^{\imath \alpha s} d s\right),
\end{aligned}
$$

where $\bar{\alpha}_{p}$ is the complex conjugate of α_{p}.

- Test problem (Uniform distribution in a unit box)

- Accuracy for $k=0.1$ and $k=1$ with $N=10000$

p	Error for $k=0.1$	Error for $k=1$
E_{5}	1.23×10^{-4}	1.43×10^{-4}
E_{10}	2.73×10^{-6}	3.81×10^{-6}
E_{20}	2.06×10^{-9}	2.85×10^{-9}
E_{30}	1.19×10^{-11}	1.65×10^{-11}

- CPU time for $p=39$ and $k=0.1$ (Intel Xeon E5-2697 2.6Ghz with gcc, Dell 7910 workstation)

N	100	6400	10000	90000	360000	640000	810000	1000000
H-FMM time (sec)	0.01	0.67	1.19	10.92	46.58	100.85	116.03	135.05
Direct time (sec)			1.64	132.50	2199.92	6700	10732.10	16357.42

- CPU time in the log-log scale (linear scaling ©)

Conclusions and Summary

- Boundary integral equation (BIE) method for layered media
- EM scattering problem using volume integral equation (VIE) method
- Heterogeneous fast multipole method
\rightarrow Extension to multi-layered media (on-going work)
- Stochastic methodology for meta-material design
- Some source codes http://faculty.uml.edu/min_cho/software.html

Thank you!

